54,717 research outputs found

    Optimizing Average-Maximum TTR Trade-off for Cognitive Radio Rendezvous

    Full text link
    In cognitive radio (CR) networks, "TTR", a.k.a. time-to-rendezvous, is one of the most important metrics for evaluating the performance of a channel hopping (CH) rendezvous protocol, and it characterizes the rendezvous delay when two CRs perform channel hopping. There exists a trade-off of optimizing the average or maximum TTR in the CH rendezvous protocol design. On one hand, the random CH protocol leads to the best "average" TTR without ensuring a finite "maximum" TTR (two CRs may never rendezvous in the worst case), or a high rendezvous diversity (multiple rendezvous channels). On the other hand, many sequence-based CH protocols ensure a finite maximum TTR (upper bound of TTR) and a high rendezvous diversity, while they inevitably yield a larger average TTR. In this paper, we strike a balance in the average-maximum TTR trade-off for CR rendezvous by leveraging the advantages of both random and sequence-based CH protocols. Inspired by the neighbor discovery problem, we establish a design framework of creating a wake-up schedule whereby every CR follows the sequence-based (or random) CH protocol in the awake (or asleep) mode. Analytical and simulation results show that the hybrid CH protocols under this framework are able to achieve a greatly improved average TTR as well as a low upper-bound of TTR, without sacrificing the rendezvous diversity.Comment: Accepted by IEEE International Conference on Communications (ICC 2015, http://icc2015.ieee-icc.org/

    Rendezvous requirements and candidate worst case flights from the October 1973 space shuttle traffic model

    Get PDF
    Data appearing in the October 1973 space shuttle traffic model were analyzed to determine the rendezvous requirements for the proposed shuttle flights occurring between 1980 and 1991. Four families of flights have been identified, namely, single-payload rendezvous, multiple-payload rendezvous, payload and tug rendezvous, and tug only rendezvous. Charts have been prepared which summarize the respective data. Observations are presented for each of the four flight families, and worst case flights are proposed from each family for further analysis

    Time Versus Cost Tradeoffs for Deterministic Rendezvous in Networks

    Full text link
    Two mobile agents, starting from different nodes of a network at possibly different times, have to meet at the same node. This problem is known as rendezvous\mathit{rendezvous}. Agents move in synchronous rounds. Each agent has a distinct integer label from the set {1,,L}\{1,\dots,L\}. Two main efficiency measures of rendezvous are its time\mathit{time} (the number of rounds until the meeting) and its cost\mathit{cost} (the total number of edge traversals). We investigate tradeoffs between these two measures. A natural benchmark for both time and cost of rendezvous in a network is the number of edge traversals needed for visiting all nodes of the network, called the exploration time. Hence we express the time and cost of rendezvous as functions of an upper bound EE on the time of exploration (where EE and a corresponding exploration procedure are known to both agents) and of the size LL of the label space. We present two natural rendezvous algorithms. Algorithm Cheap\mathtt{Cheap} has cost O(E)O(E) (and, in fact, a version of this algorithm for the model where the agents start simultaneously has cost exactly EE) and time O(EL)O(EL). Algorithm Fast\mathtt{Fast} has both time and cost O(ElogL)O(E\log L). Our main contributions are lower bounds showing that, perhaps surprisingly, these two algorithms capture the tradeoffs between time and cost of rendezvous almost tightly. We show that any deterministic rendezvous algorithm of cost asymptotically EE (i.e., of cost E+o(E)E+o(E)) must have time Ω(EL)\Omega(EL). On the other hand, we show that any deterministic rendezvous algorithm with time complexity O(ElogL)O(E\log L) must have cost Ω(ElogL)\Omega (E\log L)

    Rendezvous of Heterogeneous Mobile Agents in Edge-weighted Networks

    Get PDF
    We introduce a variant of the deterministic rendezvous problem for a pair of heterogeneous agents operating in an undirected graph, which differ in the time they require to traverse particular edges of the graph. Each agent knows the complete topology of the graph and the initial positions of both agents. The agent also knows its own traversal times for all of the edges of the graph, but is unaware of the corresponding traversal times for the other agent. The goal of the agents is to meet on an edge or a node of the graph. In this scenario, we study the time required by the agents to meet, compared to the meeting time TOPTT_{OPT} in the offline scenario in which the agents have complete knowledge about each others speed characteristics. When no additional assumptions are made, we show that rendezvous in our model can be achieved after time O(nTOPT)O(n T_{OPT}) in a nn-node graph, and that such time is essentially in some cases the best possible. However, we prove that the rendezvous time can be reduced to Θ(TOPT)\Theta (T_{OPT}) when the agents are allowed to exchange Θ(n)\Theta(n) bits of information at the start of the rendezvous process. We then show that under some natural assumption about the traversal times of edges, the hardness of the heterogeneous rendezvous problem can be substantially decreased, both in terms of time required for rendezvous without communication, and the communication complexity of achieving rendezvous in time Θ(TOPT)\Theta (T_{OPT})

    Rendezvous of Distance-aware Mobile Agents in Unknown Graphs

    Get PDF
    We study the problem of rendezvous of two mobile agents starting at distinct locations in an unknown graph. The agents have distinct labels and walk in synchronous steps. However the graph is unlabelled and the agents have no means of marking the nodes of the graph and cannot communicate with or see each other until they meet at a node. When the graph is very large we want the time to rendezvous to be independent of the graph size and to depend only on the initial distance between the agents and some local parameters such as the degree of the vertices, and the size of the agent's label. It is well known that even for simple graphs of degree Δ\Delta, the rendezvous time can be exponential in Δ\Delta in the worst case. In this paper, we introduce a new version of the rendezvous problem where the agents are equipped with a device that measures its distance to the other agent after every step. We show that these \emph{distance-aware} agents are able to rendezvous in any unknown graph, in time polynomial in all the local parameters such the degree of the nodes, the initial distance DD and the size of the smaller of the two agent labels l=min(l1,l2)l = \min(l_1, l_2). Our algorithm has a time complexity of O(Δ(D+logl))O(\Delta(D+\log{l})) and we show an almost matching lower bound of Ω(Δ(D+logl/logΔ))\Omega(\Delta(D+\log{l}/\log{\Delta})) on the time complexity of any rendezvous algorithm in our scenario. Further, this lower bound extends existing lower bounds for the general rendezvous problem without distance awareness

    Rendezvous of Two Robots with Constant Memory

    Full text link
    We study the impact that persistent memory has on the classical rendezvous problem of two mobile computational entities, called robots, in the plane. It is well known that, without additional assumptions, rendezvous is impossible if the entities are oblivious (i.e., have no persistent memory) even if the system is semi-synchronous (SSynch). It has been recently shown that rendezvous is possible even if the system is asynchronous (ASynch) if each robot is endowed with O(1) bits of persistent memory, can transmit O(1) bits in each cycle, and can remember (i.e., can persistently store) the last received transmission. This setting is overly powerful. In this paper we weaken that setting in two different ways: (1) by maintaining the O(1) bits of persistent memory but removing the communication capabilities; and (2) by maintaining the O(1) transmission capability and the ability to remember the last received transmission, but removing the ability of an agent to remember its previous activities. We call the former setting finite-state (FState) and the latter finite-communication (FComm). Note that, even though its use is very different, in both settings, the amount of persistent memory of a robot is constant. We investigate the rendezvous problem in these two weaker settings. We model both settings as a system of robots endowed with visible lights: in FState, a robot can only see its own light, while in FComm a robot can only see the other robot's light. We prove, among other things, that finite-state robots can rendezvous in SSynch, and that finite-communication robots are able to rendezvous even in ASynch. All proofs are constructive: in each setting, we present a protocol that allows the two robots to rendezvous in finite time.Comment: 18 pages, 3 figure
    corecore