48,841 research outputs found

    The Sevenless signaling pathway: variations of a common theme

    Get PDF
    AbstractMany developmental processes are regulated by intercellular signaling mechanisms that employ the activation of receptor tyrosine kinases. One model system that has been particular useful in determining the role of receptor tyrosine kinase-mediated signaling processes in cell fate determination is the developing Drosophila eye. The specification of the R7 photoreceptor cell in each ommatidium of the developing Drosophila eye is dependent on activation of the Sevenless receptor tyrosine kinase. This review will focus on the genetic and biochemical approaches that have identified signaling molecules acting downstream of the Sevenless receptor tyrosine kinase which ultimately trigger differentiation of the R7 photoreceptor cell

    The nucleotide and partial amino acid sequences of rat fetuin

    Get PDF
    Fetuins are among the major plasma proteins, yet their biological role has remained elusive. Here we report the molecular cloning of rat fetuin and the sequence analysis of a full-length clone, RF619 of 1456 bp with an open reading frame of 1056 bp encoding 352 amino acid residues. The coding part of RF619 was identical with the cDNA sequence of the natural inhibitor of the insulin receptor tyrosine kinase from rat (pp63) except for four substitutions and a single base insertion causing divergence of the predicted protein sequences. Partial amino acid sequences of rat plasma fetuin were in agreement with the predictions based on the RF619 cDNA. Purified rat fetuin inhibited the insulin receptor tyrosine kinase in vitro. Therefore, we conclude that RF619 and pp63 cDNA encode the same protein, i.e. authentic rat fetuin which is a functional tyrosine kinase inhibitor

    The deleted in brachydactyly B domain of ROR2 is required for receptor activation by recruitment of Src

    Get PDF
    The transmembrane receptor 'ROR2' resembles members of the receptor tyrosine kinase family of signalling receptors in sequence but its' signal transduction mechanisms remain enigmatic. This problem has particular importance because mutations in ROR2 are associated with two human skeletal dysmorphology syndromes, recessive Robinow Syndrome (RS) and dominant acting Brachydactyly type B (BDB). Here we show, using a constitutive dimerisation approach, that ROR2 exhibits dimerisation-induced tyrosine kinase activity and the ROR2 C-terminal domain, which is deleted in BDB, is required for recruitment and activation of the non-receptor tyrosine kinase Src. Native ROR2 phosphorylation is induced by the ligand Wnt5a and is blocked by pharmacological inhibition of Src kinase activity. Eight sites of Src-mediated ROR2 phosphorylation have been identified by mass spectrometry. Activation via tyrosine phosphorylation of ROR2 receptor leads to its internalisation into Rab5 positive endosomes. These findings show that BDB mutant receptors are defective in kinase activation as a result of failure to recruit Src

    Targeting kinases with anilinopyrimidines: Discovery of N-phenyl-N'-[4-(pyrimidin-4-ylamino)phenyl]urea derivatives as selective inhibitors of class III receptor tyrosine kinase subfamily

    Get PDF
    Kinase inhibitors are attractive drugs/drug candidates for the treatment of cancer. The most recent literature has highlighted the importance of multi target kinase inhibitors, although a correct balance between specificity and non-specificity is required. In this view, the discovery of multityrosine kinase inhibitors with subfamily selectivity is a challenging goal. Herein we present the synthesis and the preliminary kinase profiling of a set of novel 4-anilinopyrimidines. Among the synthesized compounds, the N-phenyl-N\u2019-[4-(pyrimidin-4-ylamino)phenyl]urea derivatives selectively targeted some members of class III receptor tyrosine kinase family. Starting from the structure of hit compound 19 we synthesized a further compound with an improved affinity toward the class III receptor tyrosine kinase members and endowed with a promising antitumor activity both in vitro and in vivo in a murine solid tumor model. Molecular modeling simulations were used in order to rationalize the behavior of the title compounds

    A novel protein isoform of the RON tyrosine kinase receptor transforms human pancreatic duct epithelial cells.

    Get PDF
    The MST1R gene is overexpressed in pancreatic cancer producing elevated levels of the RON tyrosine kinase receptor protein. While mutations in MST1R are rare, alternative splice variants have been previously reported in epithelial cancers. We report the discovery of a novel RON isoform discovered in human pancreatic cancer. Partial splicing of exons 5 and 6 (P5P6) produces a RON isoform that lacks the first extracellular immunoglobulin-plexin-transcription domain. The splice variant is detected in 73% of xenografts derived from pancreatic adenocarcinoma patients and 71% of pancreatic cancer cell lines. Peptides specific to RON P5P6 detected in human pancreatic cancer specimens by mass spectrometry confirm translation of the protein isoform. The P5P6 isoform is found to be constitutively phosphorylated, present in the cytoplasm, and it traffics to the plasma membrane. Expression of P5P6 in immortalized human pancreatic duct epithelial (HPDE) cells activates downstream AKT, and in human pancreatic epithelial nestin-expressing cells, activates both the AKT and MAPK pathways. Inhibiting RON P5P6 in HPDE cells using a small molecule inhibitor BMS-777607 blocked constitutive activation and decreased AKT signaling. P5P6 transforms NIH3T3 cells and induces tumorigenicity in HPDE cells. Resultant HPDE-P5P6 tumors develop a dense stromal compartment similar to that seen in pancreatic cancer. In summary, we have identified a novel and constitutively active isoform of the RON tyrosine kinase receptor that has transforming activity and is expressed in human pancreatic cancer. These findings provide additional insight into the biology of the RON receptor in pancreatic cancer and are clinically relevant to the study of RON as a potential therapeutic target

    The C. Elegans ROR receptor tyrosine kinase, CAM-1, non-autonomously inhibits the Wnt pathway

    Get PDF
    Inhibitors of Wnt signaling promote normal development and prevent cancer by restraining when and where the Wnt pathway is activated. ROR proteins, a class of Wnt-binding receptor tyrosine kinases, inhibit Wnt signaling by an unknown mechanism. To clarify how RORs inhibit the Wnt pathway, we examined the relationship between Wnts and the sole C. elegans ROR homolog, cam-1, during C. elegans vulval development, a Wnt-regulated process. We found that loss and overexpression of cam-1 causes reciprocal defects in Wnt-mediated cell-fate specification. Our molecular and genetic analyses revealed that the CAM-1 extracellular domain (ECD) is sufficient to non-autonomously antagonize multiple Wnts, suggesting that the CAM-1/ROR ECD sequesters Wnts. A sequestration model is supported by our findings that the CAM-1 ECD binds to several Wnts in vitro. These results demonstrate how ROR proteins help to refine the spatial pattern of Wnt activity in a complex multicellular environment

    Association of a MET genetic variant with autism-associated maternal autoantibodies to fetal brain proteins and cytokine expression.

    Get PDF
    The contribution of peripheral immunity to autism spectrum disorders (ASDs) risk is debated and poorly understood. Some mothers of children with ASD have autoantibodies that react to fetal brain proteins, raising the possibility that a subset of ASD cases may be associated with a maternal antibody response during gestation. The mechanism by which the maternal immune system breaks tolerance has not been addressed. We hypothesized that the mechanism may involve decreased expression of the MET receptor tyrosine kinase, an ASD risk gene that also serves as a key negative regulator of immune responsiveness. In a sample of 365 mothers, including 202 mothers of children with ASD, the functional MET promoter variant rs1858830 C allele was strongly associated with the presence of an ASD-specific 37+73-kDa band pattern of maternal autoantibodies to fetal brain proteins (P=0.003). To determine the mechanism of this genetic association, we measured MET protein and cytokine production in freshly prepared peripheral blood mononuclear cells from 76 mothers of ASD and typically developing children. The MET rs1858830 C allele was significantly associated with MET protein expression (P=0.025). Moreover, decreased expression of the regulatory cytokine IL-10 was associated with both the MET gene C allele (P=0.001) and reduced MET protein levels (P=0.002). These results indicate genetic distinction among mothers who produce ASD-associated antibodies to fetal brain proteins, and suggest a potential mechanism for how a genetically determined decrease in MET protein production may lead to a reduction in immune regulation

    Targeting RET–interleukin-6 crosstalk to impair metastatic dissemination in breast cancer

    Get PDF
    RET (rearranged during transfection) is a receptor tyrosine kinase overexpressed in a subset of oestrogen receptor (ER)-positive breast cancers whose expression is regulated by ER signalling. The article from the Hynes group has reported for the first time that RET expression can also be regulated by the inflammatory cytokine IL-6. Importantly, RET and IL-6 interact at a functional level to control migration and the metastatic potential of ER-positive breast cancer cells, in a process that is mediated by FAK activation. Further, targeting RET with receptor tyrosine kinase inhibitors was reported to be more effective than endocrine therapies in impairing metastatic dissemination in vivo, thereby indicating a level of RET regulation that is independent of ER

    Kinase profiling of liposarcomas using RNAi and drug screening assays identified druggable targets.

    Get PDF
    BackgroundLiposarcoma, the most common soft tissue tumor, is understudied cancer, and limited progress has been made in the treatment of metastatic disease. The Achilles heel of cancer often is their kinases that are excellent therapeutic targets. However, very limited knowledge exists of therapeutic critical kinase targets in liposarcoma that could be potentially used in disease management.MethodsLarge RNAi and small-molecule tyrosine kinase inhibitor screens were performed against the proliferative capacity of liposarcoma cell lines of different subtypes. Each small molecule inhibitor was either FDA approved or in a clinical trial.ResultsScreening assays identified several previously unrecognized targets including PTK2 and KIT in liposarcoma. We also observed that ponatinib, multi-targeted tyrosine kinase inhibitor, was the most effective drug with anti-growth effects against all cell lines. In vitro assays showed that ponatinib inhibited the clonogenic proliferation of liposarcoma, and this anti-growth effect was associated with apoptosis and cell cycle arrest at the G0/G1 phase as well as a decrease in the KIT signaling pathway. In addition, ponatinib inhibited in vivo growth of liposarcoma in a xenograft model.ConclusionsTwo large-scale kinase screenings identified novel liposarcoma targets and a FDA-approved inhibitor, ponatinib with clear anti-liposarcoma activity highlighting its potential therapy for treatment of this deadly tumor
    corecore