2,383,659 research outputs found

    Asymptotic tail behavior of phase-type scale mixture distributions

    Get PDF
    We consider phase-type scale mixture distributions which correspond to distributions of a product of two independent random variables: a phase-type random variable YY and a nonnegative but otherwise arbitrary random variable SS called the scaling random variable. We investigate conditions for such a class of distributions to be either light- or heavy-tailed, we explore subexponentiality and determine their maximum domains of attraction. Particular focus is given to phase-type scale mixture distributions where the scaling random variable SS has discrete support --- such a class of distributions has been recently used in risk applications to approximate heavy-tailed distributions. Our results are complemented with several examples.Comment: 18 pages, 0 figur

    Approximation of probability density functions for PDEs with random parameters using truncated series expansions

    Full text link
    The probability density function (PDF) of a random variable associated with the solution of a partial differential equation (PDE) with random parameters is approximated using a truncated series expansion. The random PDE is solved using two stochastic finite element methods, Monte Carlo sampling and the stochastic Galerkin method with global polynomials. The random variable is a functional of the solution of the random PDE, such as the average over the physical domain. The truncated series are obtained considering a finite number of terms in the Gram-Charlier or Edgeworth series expansions. These expansions approximate the PDF of a random variable in terms of another PDF, and involve coefficients that are functions of the known cumulants of the random variable. To the best of our knowledge, their use in the framework of PDEs with random parameters has not yet been explored

    Variable Metric Random Pursuit

    Full text link
    We consider unconstrained randomized optimization of smooth convex objective functions in the gradient-free setting. We analyze Random Pursuit (RP) algorithms with fixed (F-RP) and variable metric (V-RP). The algorithms only use zeroth-order information about the objective function and compute an approximate solution by repeated optimization over randomly chosen one-dimensional subspaces. The distribution of search directions is dictated by the chosen metric. Variable Metric RP uses novel variants of a randomized zeroth-order Hessian approximation scheme recently introduced by Leventhal and Lewis (D. Leventhal and A. S. Lewis., Optimization 60(3), 329--245, 2011). We here present (i) a refined analysis of the expected single step progress of RP algorithms and their global convergence on (strictly) convex functions and (ii) novel convergence bounds for V-RP on strongly convex functions. We also quantify how well the employed metric needs to match the local geometry of the function in order for the RP algorithms to converge with the best possible rate. Our theoretical results are accompanied by numerical experiments, comparing V-RP with the derivative-free schemes CMA-ES, Implicit Filtering, Nelder-Mead, NEWUOA, Pattern-Search and Nesterov's gradient-free algorithms.Comment: 42 pages, 6 figures, 15 tables, submitted to journal, Version 3: majorly revised second part, i.e. Section 5 and Appendi

    Random Forest variable importance with missing data

    Get PDF
    Random Forests are commonly applied for data prediction and interpretation. The latter purpose is supported by variable importance measures that rate the relevance of predictors. Yet existing measures can not be computed when data contains missing values. Possible solutions are given by imputation methods, complete case analysis and a newly suggested importance measure. However, it is unknown to what extend these approaches are able to provide a reliable estimate of a variables relevance. An extensive simulation study was performed to investigate this property for a variety of missing data generating processes. Findings and recommendations: Complete case analysis should not be applied as it inappropriately penalized variables that were completely observed. The new importance measure is much more capable to reflect decreased information exclusively for variables with missing values and should therefore be used to evaluate actual data situations. By contrast, multiple imputation allows for an estimation of importances one would potentially observe in complete data situations

    Correlation and variable importance in random forests

    Full text link
    This paper is about variable selection with the random forests algorithm in presence of correlated predictors. In high-dimensional regression or classification frameworks, variable selection is a difficult task, that becomes even more challenging in the presence of highly correlated predictors. Firstly we provide a theoretical study of the permutation importance measure for an additive regression model. This allows us to describe how the correlation between predictors impacts the permutation importance. Our results motivate the use of the Recursive Feature Elimination (RFE) algorithm for variable selection in this context. This algorithm recursively eliminates the variables using permutation importance measure as a ranking criterion. Next various simulation experiments illustrate the efficiency of the RFE algorithm for selecting a small number of variables together with a good prediction error. Finally, this selection algorithm is tested on the Landsat Satellite data from the UCI Machine Learning Repository

    Variable selection in multiple regression with random design

    Full text link
    We propose a method for variable selection in multiple regression with random predictors. This method is based on a criterion that permits to reduce the variable selection problem to a problem of estimating suitable permutation and dimensionality. Then, estimators for these parameters are proposed and the resulting method for selecting variables is shown to be consistent. A simulation study that permits to gain understanding of the performances of the proposed approach and to compare it with an existing method is given

    Automatic Probabilistic Program Verification through Random Variable Abstraction

    Full text link
    The weakest pre-expectation calculus has been proved to be a mature theory to analyze quantitative properties of probabilistic and nondeterministic programs. We present an automatic method for proving quantitative linear properties on any denumerable state space using iterative backwards fixed point calculation in the general framework of abstract interpretation. In order to accomplish this task we present the technique of random variable abstraction (RVA) and we also postulate a sufficient condition to achieve exact fixed point computation in the abstract domain. The feasibility of our approach is shown with two examples, one obtaining the expected running time of a probabilistic program, and the other the expected gain of a gambling strategy. Our method works on general guarded probabilistic and nondeterministic transition systems instead of plain pGCL programs, allowing us to easily model a wide range of systems including distributed ones and unstructured programs. We present the operational and weakest precondition semantics for this programs and prove its equivalence

    Quantum wiretap channel with non-uniform random number and its exponent and equivocation rate of leaked information

    Full text link
    A usual code for quantum wiretap channel requires an auxiliary random variable subject to the perfect uniform distribution. However, it is difficult to prepare such an auxiliary random variable. We propose a code that requires only an auxiliary random variable subject to a non-uniform distribution instead of the perfect uniform distribution. Further, we evaluate the exponential decreasing rate of leaked information and derive its equivocation rate. For practical constructions, we also discuss the security when our code consists of a linear error correcting code
    corecore