222 research outputs found

    On Rainbow Connection Number and Connectivity

    Full text link
    Rainbow connection number, rc(G)rc(G), of a connected graph GG is the minimum number of colours needed to colour its edges, so that every pair of vertices is connected by at least one path in which no two edges are coloured the same. In this paper we investigate the relationship of rainbow connection number with vertex and edge connectivity. It is already known that for a connected graph with minimum degree δ\delta, the rainbow connection number is upper bounded by 3n/(δ+1)+33n/(\delta + 1) + 3 [Chandran et al., 2010]. This directly gives an upper bound of 3n/(λ+1)+33n/(\lambda + 1) + 3 and 3n/(κ+1)+33n/(\kappa + 1) + 3 for rainbow connection number where λ\lambda and κ\kappa, respectively, denote the edge and vertex connectivity of the graph. We show that the above bound in terms of edge connectivity is tight up-to additive constants and show that the bound in terms of vertex connectivity can be improved to (2+ϵ)n/κ+23/ϵ2(2 + \epsilon)n/\kappa + 23/ \epsilon^2, for any ϵ>0\epsilon > 0. We conjecture that rainbow connection number is upper bounded by n/κ+O(1)n/\kappa + O(1) and show that it is true for κ=2\kappa = 2. We also show that the conjecture is true for chordal graphs and graphs of girth at least 7.Comment: 10 page

    Rainbow Connection Number and Connected Dominating Sets

    Full text link
    Rainbow connection number rc(G) of a connected graph G is the minimum number of colours needed to colour the edges of G, so that every pair of vertices is connected by at least one path in which no two edges are coloured the same. In this paper we show that for every connected graph G, with minimum degree at least 2, the rainbow connection number is upper bounded by {\gamma}_c(G) + 2, where {\gamma}_c(G) is the connected domination number of G. Bounds of the form diameter(G) \leq rc(G) \leq diameter(G) + c, 1 \leq c \leq 4, for many special graph classes follow as easy corollaries from this result. This includes interval graphs, AT-free graphs, circular arc graphs, threshold graphs, and chain graphs all with minimum degree at least 2 and connected. We also show that every bridge-less chordal graph G has rc(G) \leq 3.radius(G). In most of these cases, we also demonstrate the tightness of the bounds. An extension of this idea to two-step dominating sets is used to show that for every connected graph on n vertices with minimum degree {\delta}, the rainbow connection number is upper bounded by 3n/({\delta} + 1) + 3. This solves an open problem of Schiermeyer (2009), improving the previously best known bound of 20n/{\delta} by Krivelevich and Yuster (2010). Moreover, this bound is seen to be tight up to additive factors by a construction of Caro et al. (2008).Comment: 14 page

    Computing Minimum Rainbow and Strong Rainbow Colorings of Block Graphs

    Get PDF
    A path in an edge-colored graph GG is rainbow if no two edges of it are colored the same. The graph GG is rainbow-connected if there is a rainbow path between every pair of vertices. If there is a rainbow shortest path between every pair of vertices, the graph GG is strongly rainbow-connected. The minimum number of colors needed to make GG rainbow-connected is known as the rainbow connection number of GG, and is denoted by rc(G)\text{rc}(G). Similarly, the minimum number of colors needed to make GG strongly rainbow-connected is known as the strong rainbow connection number of GG, and is denoted by src(G)\text{src}(G). We prove that for every k3k \geq 3, deciding whether src(G)k\text{src}(G) \leq k is NP-complete for split graphs, which form a subclass of chordal graphs. Furthermore, there exists no polynomial-time algorithm for approximating the strong rainbow connection number of an nn-vertex split graph with a factor of n1/2ϵn^{1/2-\epsilon} for any ϵ>0\epsilon > 0 unless P = NP. We then turn our attention to block graphs, which also form a subclass of chordal graphs. We determine the strong rainbow connection number of block graphs, and show it can be computed in linear time. Finally, we provide a polynomial-time characterization of bridgeless block graphs with rainbow connection number at most 4.Comment: 13 pages, 3 figure

    The hitting time of rainbow connection number two

    Full text link
    In a graph GG with a given edge colouring, a rainbow path is a path all of whose edges have distinct colours. The minimum number of colours required to colour the edges of GG so that every pair of vertices is joined by at least one rainbow path is called the rainbow connection number rc(G)rc(G) of the graph GG. For any graph GG, rc(G)diam(G)rc(G) \ge diam(G). We will show that for the Erd\H{o}s-R\'enyi random graph G(n,p)G(n,p) close to the diameter 2 threshold, with high probability if diam(G)=2diam(G)=2 then rc(G)=2rc(G)=2. In fact, further strengthening this result, we will show that in the random graph process, with high probability the hitting times of diameter 2 and of rainbow connection number 2 coincide.Comment: 16 pages, 2 figure

    On the threshold for rainbow connection number r in random graphs

    Full text link
    We call an edge colouring of a graph G a rainbow colouring if every pair of vertices is joined by a rainbow path, i.e., a path where no two edges have the same colour. The minimum number of colours required for a rainbow colouring of the edges of G is called the rainbow connection number (or rainbow connectivity) rc(G) of G. We investigate sharp thresholds in the Erd\H{o}s-R\'enyi random graph for the property "rc(G) <= r" where r is a fixed integer. It is known that for r=2, rainbow connection number 2 and diameter 2 happen essentially at the same time in random graphs. For r >= 3, we conjecture that this is not the case, propose an alternative threshold, and prove that this is an upper bound for the threshold for rainbow connection number r.Comment: 16 pages, 2 figure
    corecore