214,627 research outputs found

    Radiation Hydrodynamics of Line-Driven Winds

    Get PDF
    Dimtri Mihalas' textbooks in the 70's and 80's on "Stellar Atmospheres" and "Foundations of Radiation Hydrodynamics" helped lay the early groundwork for understanding the moving atmospheres and winds of massive, luminous stars. Indeed, the central role of the momentum of stellar radiation in driving the mass outflow makes such massive-star winds key prototypes for radiation hydrodynamical processes. This paper reviews the dynamics of such radiative driving, building first upon the standard CAK model, and then discussing subtleties associated with the development and saturation of instabilities, and wind initiation near the sonic point base. An overall goal is to illuminate the rich physics of radiative driving and the challenges that lie ahead in developing dynamical models that can explain the broad scaling of mass loss rate and flow speed with stellar properties, as well as the often complex structure and variability observed in massive-star outflows.Comment: 14 pages. to appear in "Recent Directions in Astrophysical Quantitative Spectroscopy and Radiation Hydrodynamics

    Laser-heated rocket studies

    Get PDF
    CW laser heated rocket propulsion was investigated in both the flowing core and stationary core configurations. The laser radiation considered was 10.6 micrometers, and the working gas was unseeded hydrogen. The areas investigated included initiation of a hydrogen plasma capable of absorbing laser radiation, the radiation emission properties of hot, ionized hydrogen, the flow of hot hydrogen while absorbing and radiating, the heat losses from the gas and the rocket performance. The stationary core configuration was investigated qualitatively and semi-quantitatively. It was found that the flowing core rockets can have specific impulses between 1,500 and 3,300 sec. They are small devices, whose heating zone is only a millimeter to a few centimeters long, and millimeters to centimeters in radius, for laser power levels varying from 10 to 5,000 kW, and pressure levels of 3 to 10 atm. Heat protection of the walls is a vital necessity, though the fraction of laser power lost to the walls can be as low as 10% for larger powers, making the rockets thermally efficient

    Electrification in winter storms and the analysis of thunderstorm overflight data

    Get PDF
    We have been focusing our study of electrification in winter storms on the lightning initiation process, making inferences about the magnitude of the electric fields from the initial pulses associated with breakdown, i.e., with the formation of the initial streamers. The essence of the most significant finding is as follows: (1) initial breakdown radiation pulses from stepped leaders prior to the first return stroke are very large, reaching values of 20-30 Volts/meter, comparable to return stroke radiation; and (2) the duration of the stepped leader, from the initial detectable radiation pulse to the return stroke onset, is very-short-ranging from a minimum 1.5 ms to a maximum of 4.5 ms. This past summer (June-August of 1991) we participated in the CAPE program at the Kennedy Space Center in order to acquire data on stepped leaders in summer storms with the same equipment used to get the winter storm data. We discovered that the vigorous leaders seen in winter so frequently were present in summer storms, although not as large in amplitude and certainly not as frequent

    Beyond Concurrent Chemoradiation: The Emerging Role of PD-1/PD-L1 Inhibitors in Stage III Lung Cancer.

    Get PDF
    Concurrent chemoradiation (cCRT) with platinum-based chemotherapy is standard-of-care therapy for patients with stage III unresectable non-small cell lung cancer (NSCLC). Although cCRT is potentially curative, 5-year overall survival has hovered around 20%, despite extensive efforts to improve outcomes with increasing doses of conformal radiation and intensification of systemic therapy with either induction or consolidation chemotherapy. PD-1/PD-L1 immune checkpoint inhibitors have demonstrated unprecedented efficacy in patients with stage IV NSCLC. In addition, preclinical and early clinical evidence suggests that chemotherapy and radiation may work synergistically with anti-PD-1/PD-L1 therapy to promote antitumor immunity, which has led to the initiation of clinical trials testing these drugs in patients with stage III NSCLC. A preliminary report of a randomized phase III trial, the PACIFIC trial, demonstrated an impressive increase in median progression-free survival with consolidative durvalumab, a PD-L1 inhibitor, compared with observation after cCRT. Here, we discuss the clinical and translational implications of integrating PD-1/PD-L1 inhibitors in the management of patients with unresectable stage III NSCLC

    Gaps in Treatment and Surveillance: Head and Neck Cancer Care in a Safety-Net Hospital.

    Get PDF
    Objective:Treatment delays and suboptimal adherence to posttreatment surveillance may adversely affect head and neck cancer (HNC) outcomes. Such challenges can be exacerbated in safety-net settings that struggle with limited resources and serve a disproportionate number of patients vulnerable to gaps in care. This study aims to characterize treatment delays and adherence with posttreatment surveillance in HNC care at an urban tertiary care public hospital in San Francisco. Study Design:Retrospective chart review. Setting:Urban tertiary care public hospital in San Francisco. Subjects and Methods:We identified all cases of HNC diagnosed from 2008 to 2010 through the electronic medical record. We abstracted data, including patient characteristics, disease characteristics, pathology and radiology findings, treatment details, posttreatment follow-up, and clinical outcomes. Results:We included 64 patients. Median time from diagnosis to treatment initiation (DTI) was 57 days for all patients, 54 days for patients undergoing surgery only, 49 days for patients undergoing surgery followed by adjuvant radiation ± chemotherapy, 65 days for patients undergoing definitive radiation ± chemotherapy, and 29 days for patients undergoing neoadjuvant chemotherapy followed by radiation or chemoradiation. Overall, 69% of patients completed recommended treatment. Forty-two of 61 (69%) patients demonstrated adherence to posttreatment visits in year 1; this fell to 14 out of 30 patients (47%) by year 5. Conclusion:DTI was persistently prolonged in this study compared with prior studies in other public hospital settings. Adherence to posttreatment surveillance was suboptimal and continued to decline as the surveillance period progressed

    Multipoint, high time resolution galactic cosmic ray observations associated with two interplanetary coronal mass ejections

    Get PDF
    [1] Galactic cosmic rays (GCRs) play an important role in our understanding of the interplanetary medium (IPM). The causes of their short timescale variations, however, remain largely unexplored. In this paper, we compare high time resolution, multipoint space-based GCR data to explore structures in the IPM that cause these variations. To ensure that features we see in these data actually relate to conditions in the IPM, we look for correlations between the GCR time series from two instruments onboard the Polar and INTEGRAL (International Gamma Ray Astrophysical Laboratory) satellites, respectively inside and outside Earth\u27s magnetosphere. We analyze the period of 18–24 August 2006 during which two interplanetary coronal mass ejections (ICMEs) passed Earth and produced a Forbush decrease (Fd) in the GCR flux. We find two periods, for a total of 10 h, of clear correlation between small-scale variations in the two GCR time series during these 7 days, thus demonstrating that such variations are observable using space-based instruments. The first period of correlation lasted 6 h and began 2 h before the shock of the first ICME passed the two spacecraft. The second period occurred during the initial decrease of the Fd, an event that did not conform to the typical one- or two-step classification of Fds. We propose that two planar magnetic structures preceding the first ICME played a role in both periods: one structure in driving the first correlation and the other in initiating the Fd
    corecore