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Abstract. Dimtri Mihalas’ textbooks in the 70’s and 80’s onStellar Atmospheres andFoundations
of Radiation Hydrodynamics helped lay the early groundwork for understanding the moving atmo-
spheres and winds of massive, luminous stars. Indeed, the central role of the momentum of stellar
radiation in driving the mass outflow makes such massive-star winds key prototypes for radiation
hydrodynamical processes. This paper reviews the dynamicsof such radiative driving, building first
upon the standard CAK model, and then discussing subtletiesassociated with the development and
saturation of instabilities, and wind initiation near the sonic point base. An overall goal is to illumi-
nate the rich physics of radiative driving and the challenges that lie ahead in developing dynamical
models that can explain the broad scalings of mass loss rate and flow speed with stellar properties,
as well as the often complex structure and variability observed in massive-star outflows.
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INTRODUCTION

Through his textbooks and numerous papers, Dimitri Mihalashelped lay the groundwork
for radiation hydrodynamics as an active discipline within astrophysics. Many of the
contributions to this conference in his honor have emphasized the common roles that
radiation plays both as a diagnostic and as an energy source/sink for astrophysical fluids.
But perhaps the most fundamental aspect of radiation hydrodynamics arises when the
momentum of radiation plays the central role in the dynamical drivingof an astrophysical
flow. A key prototype for this lies in the strong stellar windsfrom hot, massive, luminous
stars, which are driven by the scattering of the star’s continuum radiation flux by line-
transitions of metal ions.

The discussion here aims to summarize some basic physical concepts from the nearly
4 decades of research since line-driving was first proposed as the mechanism for hot-
star winds [15]. I begin with a summary of the standard CAK/Sobolev [3, 38] formalism
for spherical, steady-state models of such winds. I then review subsequent studies that
emphasize how relaxation of the Sobolev approximation for localized line-transport is
central to modeling both the strong, small-scale instability of line-driving, as well as
the wind initiation near the transonic wind base. A subtle but important aspect of this is
the strong, dynamical role of thediffuse component of line-scattered radiation, which is
entirely ignored in the standard CAK/Sobolev approach, butwhich can be approximately
accounted for throughnonlocal, integral forms for the escape probability.
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FIGURE 1. Two perspectives for the Doppler-shifted line-resonance in an accelerating flow. Right:
Photons with a wavelength just shortward of a line propagatefreely from the stellar surface up to a
layer where the wind outflow Doppler shifts the line into a resonance over a narrow width (represented
here by the shading) equal to the Sobolev length, set by the ratio of thermal speed to velocity gradient,
lSob ≡ vth/(dv/dr). Left: Seen from successively larger radii within the accelerating wind, the Doppler-
shift sweeps out an increasingly broadened line absorptiontrough in the stellar spectrum.

THE CAK/SOBOLEV MODEL FOR STEADY WINDS

Consider a steady-state stellar wind outflow in which the radiative accelerationgrad
overcomes the local gravityGM∗/r2 at radiusr to drive a net accelerationv(dv/dr) in
the radial flow speedv(r). Since overcoming gravity is key, it is convenient to define a
dimensionless equation of motion that scales all accelerations by gravity,

(1−ws/w)w′ =−1+Γrad , (1)

whereΓrad ≡ grad r2/GM∗, w ≡ v2/v2
esc, andw′ ≡ dw/dx, with x ≡ 1−R∗/r andvesc ≡

√

2GM∗/R∗ the escape speed from the stellar surface radiusR∗. Eqn. (1) neglects gas
pressure terms on the right side, since for isothermal soundspeeda these are of order
ws ≡ (a/vesc)

2 ≈ 0.001 compared to competing terms needed to drive the wind.
For pure electron scattering opacityκe, the scaled radiative acceleration is just the

usual Eddington parameter [6],

Γe ≡
κeL∗

4πGM∗c
= 2×10−5 L∗/L⊙

M∗/M⊙
. (2)

Because typicallyL∗ ∼ M3−3.5
∗ , stars withM∗ > 10M⊙ haveΓe > 10−3, with the Ed-

dington limit Γe → 1 perhaps even being central to setting a stellar upper mass limit
of M∗ ≤ 150M⊙ [9]. Eruptive mass loss from luminous blue variable (LBV) stars like
η Carinae might in fact be continuum-driven during episodes of super-Eddington lumi-
nosity [4, 22, 28].

But the resonant nature of line (bound-bound) scattering from metal ions leads to an
opacity that is inherently much stronger than from free electrons. For example, in the



somewhat idealized,optically thin limit that all the line opacity could be illuminated
with a flat, unattenuated continuum spectrum with the full stellar luminosity, the total
line-force would exceed the free-electron force by a huge factor, of orderQ ≈ 2000
[11]. This implies line-driven winds can be initiated in even moderately massive stars
with Γe > 5×10−4, while for more massive stars withΓe ≈ 1/2, the net outward line
acceleration in principle could be as high asΓthin ≈ QΓe ≈ 1000 times the acceleration
of gravity!

In practice, self-absorption within strong lines limits the acceleration, with the mass
loss rateṀ set at the level for which the line driving is just sufficient to overcome
gravity. Indeed line-saturation keeps the dense, nearly static layers of the atmosphere
gravitationally bound. But as illustrated by figure 1, within the accelerating wind, the
Doppler shift of the line-resonance out of the absorption shadow of underlying material
exposes the line opacity to a less attenuated flux. This effectively desaturates the lines
by limiting the resonance to a layer with width set by the Sobolev length, lSob =
vth/(dv/dr), and with optical depth proportional tot ≡ κeρc/(dv/dr) = ΓeṀc2/L∗w′.

For the CAK line-ensemble with a power-law number distribution in line-strength,
the cumulative force is reduced by a factor 1/(Qt)α from the optically thin value,

ΓCAK =
QΓe

(1−α)(Qt)α = Γekt−α =C(w′)α , (3)

where the second equality defines the CAK “force muliplier”kt−α , with1 k ≡Q
1−α

/(1−
α). The last equality relates the line-force to the flow acceleration, with

C ≡
1

1−α

[

L∗
Ṁc2

]α
[

QΓe
]1−α

. (4)

Note that, for fixed sets of parameters for the star (L∗, M∗, Γe) and line-opacity (α, Q),
this constant scales with the mass loss rate asC ∝ 1/Ṁα .

Neglecting the small sound-speed termws ≈ 0.001≪ 1, application of eqn. (3) into
(1) gives the CAK equation of motion,

F = w′+1−Γe −C(w′)α = 0. (5)

For smallṀ (largeC), there are two solutions, while for largėM (smallC), there are no
solutions. The CAK critical solution corresponds to amaximal mass loss rate, defined
by ∂F/∂w′ = 0, for which theC(w′)α is tangent to the line 1− Γe +w′ at a critical
accelerationw′

c = (1−Γe)α/(1−α). Since the scaled equation of motion (5) has no
explicit spatial dependence, this critical acceleration applies throughout the wind, and

1 Here we use a slight variation of the standard CAK notation inwhich the artificial dependence on
a fiducial ion thermal speed is avoided by simply settingvth = c. Backconversion to CAK notation is
achieved by multiplyingt by vth/c andk by (vth/c)α . The line normalizationQ offers the advantages of
being a dimensionless measure of line-opacity that is independent of the assumed ion thermal speed, with
a nearly constant characteristic value of orderQ ∼ 103 for a wide range of ionization conditions [11].



so can be trivially integrated to yieldw(x) = w′
c x. In terms of dimensional quantities,

this represents a specific case of the general “beta”-velocity-law,

v(r) = v∞

(

1−
R∗
r

)β
, (6)

where hereβ = 1/2, and the wind terminal speedv∞ = vesc
√

α(1−Γe)/(1−α). Sim-
ilarly, the critical valueCc yields, through eqn. (4), the standard CAK scaling for the
mass loss rate

ṀCAK =
L∗
c2

α
1−α

[

QΓe

1−Γe

](1−α)/α

. (7)

These CAK results strictly apply only under the idealized assumption that the stellar
radiation is radially streaming from a point-source. If onetakes into account the finite
angular extent of the stellar disk, then near the stellar surface the radiative force is
reduced by a factorfd∗ ≈ 1/(1+α), leading to a reduced mass loss rate [10, 30]

Ṁ f d = f 1/α
d∗ ṀCAK =

ṀCAK

(1+α)1/α ≈ ṀCAK/2. (8)

Away from the star, the correction factor increases back toward unity, which for the re-
duced base mass flux implies a stronger, more extended acceleration, giving a somewhat
higher terminal speed,v∞ ≈ 3vesc, and a flatter velocity law, approximated by replacing
the exponent in eqn. (6) byβ ≈ 0.8.

The effect of a radial change in ionization can be approximately taken into account by
correcting the CAK force (3) by a factor of the form(ne/W )δ , wherene is the electron
density,W ≡ 0.5(1−

√

1−R∗/r) is the radiation “dilution factor”, and the exponent has
a typical valueδ ≈ 0.1 [11]. This factor introduces an additional density dependence to
that already implied by the optical depth factor 1/tα given in eqn. (3). Its overall effect
can be roughly accounted with the simple substitionα → α ′ ≡ α − δ in the power
exponents of the CAK mass loss scaling law (7). The general tendency is to moderately
increaseṀ, and accordingly to somewhat decrease the wind speed.

The above scalings also ignore the finite gas pressure associated with a small but non-
zero sound-speed parameterws. Through a perturbation expansion of the equation of
motion (1) in this small parameter, it possible to derive simple scalings for the fractional
corrections to the mass loss rate and terminal speed [27],

δms ≈
4
√

1−α
α

a
vesc

; δv∞,s ≈
−αδms

2(1−α)
≈

−2√
1−α

a
vesc

. (9)

For a typical case withα ≈ 2/3 andws = 0.001, the net effect is to increase the mass
loss rate and decrease the wind terminal speed, both by about10%.

Finally, an important success of these CAK scaling laws is the theoretical rationale
they provide for an empirically observed “Wind-Momentum-Luminosity” (WML) rela-
tion [12]. Combining the CAK mass-loss law (7) together withthe scaling of the terminal
speed with the effective escape, we obtain a WML relation of the form,

Ṁv∞
√

R∗ ∼ L1/α ′
Q

1/α ′−1
(10)



wherein we have neglected a residual dependence onM(1−Γe) that is generally very
weak for the usual c ase thatα ′ is near 2/3. Note that the direct dependenceQ ∼ Z
provides the scaling of the WML with metalicityZ.

NON-SOBOLEV WIND INSTABILITY & INITIATION

The above CAK steady-state model depends crucially on the use of the Sobolev approx-
imation to compute the local CAK line force (3). Analyses that relax this approximation
show that the flow is subject to a strong, “line-deshadowing instability” (LDI) for ve-
locity perturbations on a scale near and below the Sobolev length lSob = vth/(dv/dr)
[15, 16, 25, 26, 23]. Moreover, the diffuse, scattered component of the line force, which
in the Sobolev limit is nullified by the fore-aft symmetry of the Sobolev escape proba-
bility (see figure 2b), turns out to have important dynamics effects on both the instability
and sonic-point initiation of the wind.

Linear Analysis of Line-Deshadowing Instability

For sinusoidal perturbations (∼ ei(kr−wt)) with wavenumberk and frequencyω, the
linearized momentum equation (ignoring the small gas pressure) relating the perturba-
tions in velocity and radiative acceleration implies

ω = i
δg
δv

, (11)

which shows that unstable growth, withℑω > 0, requiresℜ(δg/δv) > 0. For a purely
Sobolev model [1], the CAK scaling of the line-force (3) withvelocity gradientv′

impliesδg ∼ δv′ ∼ ikδv, giving a purely realω, and thus a stable wave that propagates
inward at phase speed,

ω
k
=−

∂g
∂v′

≡−U , (12)

which is now known as the “Abbott speed”. Abbott [1] showed this is comparable to the
outward wind flow speed, and in fact exactly equals it at the CAK critical point.

As illustrated in figure 2a, instability arises from the deshadowing of the line by the
extra Doppler shift from the velocity perturbation, givingδg ∼ δv and thusℑω > 0. A
general analysis [25] yields a “bridging law” encompassingboth effects,

δg
δv

≈ Ω
ikΛ

1+ ikΛ
, (13)

whereΩ ≈ gcak/vth sets the instability growth rate, and the “bridging length”Λ is found
to be of order the Sobolev lengthlsob. In the long-wavelength limitkΛ ≪ 1, we recover
the stable, Abbott-wave scalings of the Sobolev approximation, δg/δv ≈ ikΩΛ = ikU ;
while in the short-wavelength limitkΛ ≫ 1, we obtain the instability scalingδg ≈ Ωδv.
The instability growth rate is very large, about the flow ratethrough the Sobolev length,



FIGURE 2. (a) The line profileφ and direct intensity plotted vs. comoving frame frequencyx− u =
x− v/vth, with the light shaded overlap area proportional to the net direct line-forcegdir. The dashed
profile shows the effect of the Doppler shift from a perturbedvelocityδv, with the resulting extra area in
the overlap with the blue-edge intensity giving a perturbedline-forceδg that scales in proportion to this
perturbed velocityδu = δv/vth. (b) The comoving-frequency variation of the forward (+) and backward
(-) streaming parts of the diffuse, scattered radiation, illustrating the cancelling of the overlap with the
line profile that causes the net diffuse force to nearly vanish in a smooth, supersonic outflow. (c) However,
because of the Doppler shift from the perturbed velocity, the dashed profile now has a stronger interaction
with the backward streaming diffuse radiation. This results in a diffuse-line-drag force that scales with the
negative of the perturbed velocity, and so tends to counter the instability of the direct line-force in part a.

Ω ≈ v/lSob. Since this is a large factorv/vth bigger than the typical wind expansion rate
dv/dr ≈ v/R∗, a small perturbation at the wind base would, within this lineary theory,
be amplified by an enormous factor, of orderev/vth ≈ e100!



Numerical Simulations of Instability-Generated Wind Structure

Numerical simulations of the nonlinear evolution require anon-Sobolev line-force
computation on a spatial grid that spans the full wind expansion over severalR∗, yet
resolves the unstable structure at small scales near and below the Sobolev length. The
first tractable approach [20] focussed on theabsorption of thedirect radiation from the
stellar core, accounting now for the attenuation from intervening material by carrying
out anonlocal integral for the frequency-dependent radial optical depth,

t(x,r)≡
∫ r

R∗
dr′κeρ(r′)φ

[

x− v(r′)/vth
]

, (14)

whereφ is the line-profile function, andx is the observer-frame frequency from line-
center in units of the line thermal width. The correspondingnonlocal form for the CAK
line-ensemble force from this direct stellar radiation is

Γdir(r) = ΓeQ
1−α

∫ ∞

−∞
dx

φ (x− v(r)/vth)

t(x,r)α . (15)

In the Sobolev approximation,t(x,r)≈ Φ(x− v/vth)t (whereΦ(x) ≡
∫ ∞

x φ(x′)dx′), this
recovers the CAK form (3). But for perturbations on a spatialscale near and below
the Sobolev length, its variation also scales in proportionto the perturbed velocity,
leading to unstable amplification. Simulations show that because of inward nature of
wave propagation implies an anti-correlation between velocity and density variation, the
nonlinear growth leads to high-speed rarefactions that steepen into strongreverse shocks
and compress material into dense clumps (or shells in these 1D models) [20].

The assumption of pure-absorption was criticized by Lucy [13], who pointed out
that the interaction of a velocity perturbation with the background,diffuse radiation
from line-scattering results in aline-drag effect that reduces, and potentially could even
eliminate, the instability associated with the direct radiation from the underlying star.
The basic effect is illustrated in figure 2. Panel b shows how the fore-aft (±) symmetry
of the diffuse radiation leads to cancellation of theg+ andg− force components from the
forward and backward streams, as computed from a line-profile with frequency centered
on the local comoving mean flow. In contrast, panel c shows that the Doppler shift
associated with the velocity perturbationδv breaks this symmetry, and leads to stronger
forces from the component opposing the perturbation.

Full linear stability analyses accounting for scattering effects [26, 23] show the frac-
tion of the direct instability that is canceled by the line-drag of the perturbed diffuse
force depends on the ratio of the scattering source functionS to core intensityIc,

s =
r2

R2
∗

2S
Ic

≈
1

1+µ∗
; µ∗ ≡

√

1−R2
∗/r2 , (16)

where the latter approximation applies for the optically thin form 2S/Ic = 1− µ∗. The
net instability growth rate thus becomes

Ω(r)≈
gcak

vth

µ∗(r)
1+µ∗(r)

. (17)



This vanishes near the stellar surface, whereµ∗ = 0, but it approaches half the pure-
absorption rate far from the star, whereµ∗ → 1. This implies that the outer wind is still
very unstable, with cumulative growth of ca.v∞/2vth ≈ 50 e-folds.

Most efforts to account for scattering line-drag in simulations of the nonlinear evo-
lution of the instability have centered on aSmooth Source Function (SSF) approach
[18, 7, 23, 24]. This assumes that averaging over frequency and angle makes the scatter-
ing source function relatively insensitive to flow structure, implying it can be pulled out
of the integral in the formal solution for the diffuse intensity. Within a simpletwo-stream
treatment of the line-transport, the net diffuse line-force then depends on thedifference
in thenonlocal escape probabilitiesb± associated with forward (+) vs. backward (-)in-
tegrals of the frequency-dependent line-optical-depth (14). For aCAK line-ensemble,
the net diffuse force can be written in a form quite analogousto the direct component
(15),

Γdi f f (r) =
ΓeQ

1−α

2(1+µ∗)
[b−(r)−b+(r)] , (18)

with

b±(r)≡
∫ ∞

−∞
dx

φ(x− v(r)/vth)

[t±(±x,r)]α
(19)

where2 for t− the integral bounds in (14) are now fromr to the outer radiusRmax [23, 19],
and the overall normalization forΓdi f f assumes the optically thin source function from
eqn. (16). In the Sobolev approximation, both the forward and backward integrals give
the same form, viz.t±(±x,r) ≈ Φ[±(x− v/vth)]t, leading to the net cancellation of the
Sobolev diffuse force (figure 2b). But for perturbations on aspatial scale near and below
the Sobolev length, the perturbed velocity breaks the forward/back symmetry (figure
2c), leading to perturbed diffuse force that now scales in proportion to thenegative of the
perturbed velocity, and thus giving the diffuse line-drag that reduces the net instability
by the factors given in (16) and (17).

The left panel of figure 3 illustrates the results of a 1D SSF simulation, starting from
an initial condition set by smooth, steady-state CAK/Sobolev model (dashed curves).
Because of the line-drag stabilization of the driving near the star (eqn. 17), the wind base
remains smooth and steady. But away from the stellar surface, the net strong instability
leads to extensive structure in both velocity and density, roughly straddling the CAK
steady-state. Because of the backstreaming component of the diffuse line-force causes
any outer wind structure to induce small-amplitude fluctuations near the wind base,
the wind structure, once initiated, is “self-excited”, arising spontaneously without any
explict perturbation from the stellar boundary.

In the outer wind, the velocity variations become highly nonlinear and nonmonotonic,
with amplitudes approaching 1000 km/s, leading to formation of strong shocks. How-
ever, these high-velocity regions have very low density, and thus represent only very little

2 To account for the nonradial radiation from a finite-angle star, in practice SSF models carry out the
forward/back optical depth integrals along a ray with an impact parameter that isR⋆/

√
2 off the disk

center. A similar application for the direct force (15) gives within a few percent the proper finite-disk
correction to the CAK/Sobolev point-star line-force (3) ina smooth flow.



FIGURE 3. Left: Results of 1D Smooth-Source-Function (SSF) simulation of the line-deshadowing
instability. The line plots show the spatial variation of velocity (upper) and density (lower) at a fixed,
arbitrary time snapshot. The corresponding grey scales show both the time (vertical axis) and height
(horizontal axis) evolution. The dashed curve shows the corresponding smooth, steady CAK model. Right:
For 2DH+1DR SSF simulation, grayscale representation for the density variations rendered as a time
sequence of 2-D wedges of the simulation model azimuthal range∆φ = 12o stacked clockwise from the
vertical in intervals of 4000 sec from the CAK initial condition.

FIGURE 4. Greyscale rendition of the evolution of wind density and temperature, for time-dependent
wind-instability models with structure formation triggered by photospheric perturbations. The boxed
crosses identify localized region of clump-clump collision that lead to the hot, dense gas needed for a
substantial level of soft X-rays emission.

material. As noted for the pure-absorption models, this anti-correlation between velocity
and density arises because the unstable linear waves that lead to the structure have an
inward propagation relative to the mean flow. For most of the wind mass, the dominant
overall effect of the instability is to concentrate material into dense clumps, which can
lead to substantial (factor 3-5) overestimates in the mass loss rate from diagnostics (e.g.
radio or Balmer emission) that scale with the square of the density.

The presence of multiple, embedded strong shocks suggests apotential source for the
soft X-ray emission observed from massive star winds; but the rarefied nature of the
high-speed gas implies that this self-excited structure actually feeds very little material



through the strong shocks needed to heat gas to X-ray emitting temperatures. To increase
the level of X-ray emission, Feldmeier [8] introduced intrinsic perturbations at the
wind base, assuming the underlying stellar photosphere hasa turbulent spectrum of
compressible sound waves characterized by abrupt phase shifts in velocity and density.
These abrupt shifts seed wind variations that, when amplified by the line-deshadowing
instabilty, now include substantial velocity variations among the dense clumps. As
illustrated in figure 4, when these dense clumps collide, they induce regions of relatively
dense, hot gas which produce localized bursts of X-ray emission. Averaged over time,
these localized regions can collectively yield X-ray emission with a brightness and
spectrum that is comparable to what is typically observed from such hot stars.

Because of the computational expense of carrying out nonlocal optical depth integra-
tions at each time step, such SSF instability simulations have generally been limited to
just 1D. More realistically, various kinds of thin-shell instabilites [39] can be expected
to break up the structure into a complex, multidimensional form. A first step to mod-
elling both radial and lateral structure [5] is to use a restricted “2D-H+1D-R” approach,
extending the hydrodynamical model to 2D in radius and azimuth, but still keeping the
1D-SSF radial integration for the inward/outward optical depth within each azimuthal
zone. The right panel of figure 3 shows the resulting 2D density structure within a narrow
(12o) wedge, with the time evolution rendered clockwise at fixed time intervals of 4000
sec starting from the CAK initial condition at the top. The line-deshadowing instability
is first manifest as strong radial velocity variations and associated density compressions
that initially extend nearly coherently across the full azimuthal range of the computa-
tional wedge.

But as these initial “shell” structures are accelerated outward, they become progres-
sively disrupted by Rayleigh-Taylor or thin-shell instabilities that operate in azimuth
down to the grid scaledφ = 0.2o. Such a 2DR+1DH approach may well exaggerate
the level of variation on small lateral scales. The lack oflateral integration needed to
compute an azimuthal component of the diffuse line-force means that the model ignores
a potentially strong net lateral line-drag that should strongly damp azimuthal velocity
perturbations on scales below the lateral Sobolev lengthl0 ≡ rvth/vr [36]. Presuming
that this would inhibit development of lateral instabilityat such scales, then any lateral
breakup would be limited to a minimum lateral angular scale of ∆φmin ≈ l0/r = vth/vr ≈
0.01rad≈ 0.5o. Further work is needed to address this issue through explicit incorpora-
tion of the lateral line-force and the associated line-drageffect.

Overall, both the 1D and 2D SSF simulations suggest that the LDI results naturally
in strong, small-scale clumping, implying a significant (factor several) reduction in
mass loss rates deduced from density-squared diagnostics.On the other hand, the small
scale makes it unlikely individual clumps can become optically thick, and so lead to a
signifcant wind “porosity” that would weakensingle-density processes like bound-free
absorption of X-rays [21, 17]. Together these suggest the observed weak asymmetry of
X-ray emission lines from massive stars may be mainly the result of a reduced mass loss
rate, and not wind porosity.



Escape Integral Source Function Method and Wind Initiation

Finally, a full linear analysis of the effects of scatteringon the line-deshadowing
instability [26] shows that perturbations in the line source function can lead to unstable
wavemodes that now haveoutward phase propagation. Since such outward wavemodes
have a positive correlation between density and velocity, this raises the possibility that
the nonlinear amplification of velocity perturbations might now lead to strongforward
shocks; this could cause a much larger fraction of wind material to be heated to X-ray
emitting temperatures, as needed to explain the observed X-ray emission [32].

These possibilities motivated development [23] of a newEscape Integral Source
Function (EISF) that now re-uses the nonlocal escape probabilitiesb± defined in eqn.
(19) to estimate the dynamical variation of the source function,

S(r)≈ Ic [1−µ∗(r)]
b+(r)

b+(r)+b−(r)
. (20)

Using thisS(r) within a formal solution for the diffuse intensity thus provides the basis
for a computation of the diffuse line-force that accounts for both the line-drag and phase
reversal effects [23].

Application in an EISF simulation code [24] indeed confirms that the initial linear
onset of the wind instability is dominated by variations with a positive correlation
between density and velocity. However, the self-shadowingof radiative driving from
such denser, faster structures makes their growthsaturate at a low amplitude, about the
thermal speedvth. Eventually, the wind structure thus again becomes dominated by the
slower, but less-saturated growth of variations with the usual anti-correlation between
velocity and density. Overall, the fully developed wind structure in EISF models thus
turns out to be quite similar to the SSF case, with no apparenttendency to produce
denser, forward shocks that might give stronger X-ray emission.

But perhaps the biggest surprise from these EISF simulations regards the subtle nature
of the wind initiation near the sonic point base. Because theion thermal speedvth is only
moderately smaller than the sound speeda, the Sobolev lengthlSob = vth/(dv/dr) near
the sonic point becomes comparable to the characterize density/velocity scale length
H ≈ v/(dv/dr), thus raising questions about the suitability of using the Sobolev-based
CAK line-force to model the wind driving in this transonic region. The left panel of
figure 5 plots the spatial variation of various line-force components within the transonic
wind based of a CAK initial condition, for both SSF (upper) and EISF (lower) models
with a typical thermal to sound speed ratiovth/a = 0.28. Note first that in both models,
the direct force lies well below the CAK/Sobolev force throughout the subsonic region;
as first noted by Poe et al. [31], this gives non-Sobolev pure-absorption models a quite
different character than the usual CAK/Sobolev solution.

However, in the SSF model with scattering, there now develops in this region a
positive diffuse force, resulting from the strong steepening of the velocity gradient
near the sonic point, which makesb− > b+ and so through eqn. (18) gives a positive
diffuse force. Quite remarkably when added to the direct term, this gives a total force
that follows very closely the CAK/Sobolev force throughoutthe subsonic and transonic
region. This explains why the (drag-effect stabilized) base outflow in SSF simulations



FIGURE 5. Left: Spatial variation of the velocity and various components of the line force near the
transonic wind base for the SSF (top) and EISF (bottom) models, computed at the CAK initial condition.
The location of the sonic point is indicated by dotted lines in the uppermost panel. Right: a. Radial
variation near the transonic wind base of the velocityv and the line-ensemble-averaged source function
sα (normalized to the optically thin value). The dashed curve applies at the CAK initial condition, while
the solid curve gives results for at time 100 ksec later in an EISF simulation. b. Corresponding variations
of this scaled source functionsα vs. wind velocity.

follows very closely the CAK solution, and why co-moving-frame models [30] of
line-driven winds also match well the (finite-disk-corrected) CAK model. In effect,
the addition of the SSF diffuse force corrects for the non-Sobolev error in the pure-
absorption force, making the total force accurate to a higher order in the parameter
lSob/H. This suggests that the validity of a CAK/Sobolev approach,for which the diffuse
force is normally assumed to vanish and thus play no role, actually depends crucially on
the scattering nature of line-transport for proper wind initiation near the transonic base!

But the situation is further complicated by the EISF results, which instead give aneg-
ative diffuse force in the subsonic region. This stems from the strong “dip” in the EISF
source function near and below the sonic point, as shown in the right panels of figure 5.
Much like the SSF diffuse force, this dip results from the velocity gradient steepening
and associated asymmetries in the escape probabilities near the sonic point. The lower
subsonic gradient implies a lowerb+ to shift core radiation into line resonance, while the
large outward gradient leads to a higherb− that enhances the escape from the resonance



zone. This lowers the mean intensity, and by eqn. (20), the source function. But then the
strong outward increase in mean intensity from this dip implies a stronginward diffusion
of line-flux, giving rise to the inward diffuse line-force. The net result is to weaken the
total force even below its pure-absorption value, yieldingthen a reduction in the mass
flux that can be driven through the sonic point.

While the EISF method does not represent a fully consistent radiative transfer solu-
tion, such source function dips have been seen in model atmospheres with full NLTE
solutions of the line transfer [37]. It is unclear why the effect was not seen in the co-
moving-frame calculations of [30], but one possibility is that this analysis was for a
relatively dense supergiant wind, for which coupling to thecontinuum and thermaliza-
tion effects might help keep the line source function elevated, and smooth, in the sonic
region. If true, this would imply that the SSF method and results might be quite appropri-
ate for dense winds from OB supergiants. However, for late O and cooler main sequence
stay, the effects of a source-function dip could be significant, perhaps even playing a role
in their “weak wind” problem [33]. Such effects should also be considered in the context
of recent renewed interest in the role of atmospheric microturbulence on the wind mass
loss rate [14].

In conclusion, it seems that some 40 years after the initial work on line-driven stel-
lar winds, both wind instability and wind initiation remainkey issues for understanding
their radiation hydrodynamics. To end with a personal note,I first learned about stellar
winds as a graduate student in Dimitri Mihalas’ Spring 1977 course on “Stellar Atmo-
spheres” at the University of Colorado, and indeed even wrote my term paper on the
subject. In grading that paper, Dimitri wrote on the cover page, “Interesting paper; I
hope you will follow it up with some future research”. In perusing this volume of papers
from the conference in honor of his 70th birthday, perhaps hewill be amused to see that
at least one ex-student has endeavored to take his advice.
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