25,003 research outputs found
Joint radar-communication waveform designs using signals from multiplexed users
Joint radar-communication designs are exploited in applications where radar and communications systems share the same frequency band or when both radar sensing and information communication functions are required in the same system. Finding a waveform that is suitable for both radar and communication is challenging due to the difference between radar and communication operations. In this paper, we propose a new method of designing dual-functional waveforms for both radar and communication using signals from multiplexed communications users. Specifically, signals from different communications users multiplexed in the time, code or frequency domains across different data bits are linearly combined to generate an overall radar waveform. Three typical radar waveforms are considered. The coefficients of the linear combination are optimized to minimize the mean squared error with or without a constraint on the signal-to-noise ratio (SNR) for the communications signals. Numerical results show that the optimization without SNR constraint can almost perfectly approximate the radar waveform in all the cases considered, giving good dual-functional waveforms for both radar and communication. Also, among different multiplexing techniques, time division multiple access is the best option to approximate the radar waveform, followed by code division multiple access and orthogonal frequency division multiple access
Properties of the MIMO radar ambiguity function
MIMO (multiple-input multiple-output) radar is an emerging technology which has drawn considerable attention. Unlike the traditional SIMO (single-input multiple-output) radar, which transmits scaled versions of a single waveform in the antenna elements, the MIMO radar transmits independent waveforms in each of the antenna elements. It has been shown that MIMO radar systems have many advantages such as high spatial resolution, improved parameter identifiability, and enhanced flexibility for transmit beampattern design. In the traditional SIMO radar, the range and Doppler resolutions can be characterized by the radar ambiguity function. It is a major tool for studying and analyzing radar signals. Recently, the ambiguity function has been extended to the MIMO radar case. In this paper, some mathematical properties of the MIMO radar ambiguity function are derived. These properties provide insights into the MIMO radar waveform design
Wallops waveform analysis of SEASAT-1 radar altimeter data
Fitting a six parameter model waveform to over ocean experimental data from the waveform samplers in the SEASAT-1 radar altimeter is described. The fitted parameters include a waveform risetime, skewness, and track point; from these can be obtained estimates of the ocean surface significant waveheight, the surface skewness, and a correction to the altimeter's on board altitude measurement, respectively. Among the difficulties encountered are waveform sampler gains differing from calibration mode data, and incorporating the actual SEASAT-1 sampled point target response in the fitted wave form. There are problems in using the spacecraft derived attitude angle estimates, and a different attitude estimator is developed. Points raised in this report have consequences for the SEASAT-1 radar altimeter's ocean surface measurements are for the design and calibration of radar altimeters in future oceanographic satellites
Overlapped-MIMO Radar Waveform Design for Coexistence With Communication Systems
This paper explores an overlapped-multiple-input multiple-output (MIMO)
antenna architecture and a spectrum sharing algorithm via null space projection
(NSP) for radar-communications coexistence. In the overlapped-MIMO
architecture, the transmit array of a collocated MIMO radar is partitioned into
a number of subarrays that are allowed to overlap. Each of the antenna elements
in these subarrays have signals orthogonal to each other and to the elements of
the other subarrays. The proposed architecture not only improves sidelobe
suppression to reduce interference to communications system, but also enjoys
the advantages of MIMO radar without sacrificing the main desirable
characteristics. The radar-centric spectrum sharing algorithm then projects the
radar signal onto the null space of the communications system's interference
channel, which helps to avoid interference from the radar. Numerical results
are presented which show the performance of the proposed waveform design
algorithm in terms of overall beampattern and sidelobe levels of the radar
waveform and finally shows a comparison of the proposed system with existing
collocated MIMO radar architectures.Comment: accepted at IEEE WCN
- …