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Joint Radar-Communication Waveform Designs

Using Signals from Multiplexed Users
Ning Cao, Yunfei Chen, Senior Member, IEEE, Xueyun Gu, Wei Feng, Senior Member, IEEE

Abstract— Joint radar-communication designs are exploited in
applications where radar and communications systems share
the same frequency band or when both radar sensing and
information communication functions are required in the same
system. Finding a waveform that is suitable for both radar and
communication is challenging due to the difference between radar
and communication operations. In this paper, we propose a new
method of designing dual-functional waveforms for both radar
and communication using signals from multiplexed communica-
tions users. Specifically, signals from different communications
users multiplexed in the time, code or frequency domains across
different data bits are linearly combined to generate an overall
radar waveform. Three typical radar waveforms are considered.
The coefficients of the linear combination are optimized to
minimize the mean squared error with or without a constraint
on the signal-to-noise ratio (SNR) for the communications
signals. Numerical results show that the optimization without
SNR constraint can almost perfectly approximate the radar
waveform in all the cases considered, giving good dual-functional
waveforms for both radar and communication. Also, among
different multiplexing techniques, time division multiple access is
the best option to approximate the radar waveform, followed by
code division multiple access and orthogonal frequency division
multiple access.

Index Terms— Code division multiple access, joint radar-
communications, orthogonal frequency division multiple access,
time division multiple access, waveform designs.

I. INTRODUCTION

Historically radar and communications systems are de-

veloped separately due to their distinct functions. In recent

years, the two systems have started to merge with each other

for two main reasons [1]. Firstly, the ”spectrum scarcity”

problem in communications is becoming more serious, making

it imperative for the communications systems to utilize as

many available frequency bands in the radio spectrum as

possible, including the radar bands that are being opened for

shared access [2]. Hence, interference between radar and com-

munications is inevitable to make joint radar-communication

designs desirable [3]. Secondly, future emerging applications
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require both information communication and radar sensing

functions in the same system, such as autonomous driving and

asset tracking [4]. This necessitates joint designs for integrated

radar-communication functions.

Although radar and communications systems adopt similar

statistical signal processing techniques [5], they still have

considerable difference. These different characteristics bring

challenges to joint radar-communication designs. One such

challenge is the waveform design, where radar and commu-

nication functions have different requirements for a ”good”

waveform, while a single waveform has to be used for

both radar and communication functions in a unified radar-

communication system. Consequently, a lot of researches have

been conducted to find dual-functional waveforms [6]. These

dual-functional waveforms, including the one to be proposed,

can be used in the application discussed in [4]. They can

also be used in vehicular communications to communicate

data while detecting obstacles [7], in low probability-of-

interception communications to increase the data security by

hiding communications data in the radar pulse [8], and in radio

frequency identification to communicate information while

localizing tags [9]. More application scenarios are in [1].

A widely used approach is to embed the communication

symbols into the radar waveform. For example, in [10],

the antenna array was divided into several subarrays, each

of which transmitted an orthogonal radar waveform. The

communications symbols were embedded in the magnitude

or phase difference of the waveform pairs. Similarly, in

[11], the communications symbols were embedded in the

radar waveform by controlling different spread sequences as

orthogonal waveforms for radar, and the receiver decoded

the transmitted information by determining which sequence

has been transmitted. In [12] and [13], the communications

symbols were embedded in the radar waveform by modulating

the phase or amplitude of the linear frequency modulation

(LFM) waveform for radar so that the radar waveform acted

as a carrier for communications. In [14], the communica-

tions symbols were embedded in the radar waveform by re-

modulating the incident radar signal. Another widely used

method is waveform diversity. For example, in [15] and

[16], the radar signal was transmitted over the main lobe of

an antenna array, while the communications symbols were

transmitted over the side lobes of the same array. In [17],

radar and communication were combined by modulating the

same carrier, where the frequency of the carrier was modulated

by LFM for radar and the phase of the carrier was modulated

by continuous phase modulation (CPM) for communications,

simultaneously. In [18], they were combined by modulating
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the phase of the same carrier, where one phase term represents

radar and another phase term represents communications. In

[19], an orthogonal frequency division multiplexing (OFDM)

signal was used for communications but its parameters were

tuned to make it suitable for radar applications. In the radar

research alone, OFDM waveform design is an interesting

topic [21], [22]. Other works considered the optimization of

radar waveforms to minimize its impact on the co-existing

communications systems [20]. More interesting discussions on

dual-functional waveform designs can be found in [23].

All the aforementioned works have given very useful guid-

ance on dual-functional waveform designs. However, most of

these works have used the signal from only one communi-

cations user in their designs. On the other hand, in many

communications systems, the base station often serves more

than one user in the downlink. For such systems adopting

multiple antennas, references [24] - [26] studied different

beamforming schemes to explore the spatial orthogonality

of users for dual-functional waveforms. If these systems use

single antennas or multiple antennas without beamforming, the

spatial orthogonality cannot be used but users are still multi-

plexed using either time division multiple access (TDMA),

code division multiple access (CDMA), or orthogonal fre-

quency division multiple access (OFDMA) and hence, the

time, code or frequency orthogonality of multiple multiplexed

users can be exploited for dual-functional waveform designs.

One such approach is to combine the signals from multiple

communications users in different bit intervals to approximate

the radar waveform so that the radar receiver can use the

overall approximated waveform for target detection while the

communications receivers can separate their signals from the

overall waveform using orthogonal functions in the time, code,

and frequency domains for information decoding.

The purpose of this work is to study the problem of

approximating a radar pulse using signals from multiplexed

communications users over different bit intervals to design a

dual-functional waveform for both radar and communication.

Specifically, the signals from different TDMA, CDMA or

OFDMA users are linearly combined. The coefficients of

the linear combination are derived by minimizing the mean

squared error. Both the unconstrained minimization to empha-

size the approximation accuracy for radar function and the

constrained minimization to avoid degrading quality of service

for communications due to linear combination are considered.

Numerical results are presented to show that TDMA has the

highest accuracy, followed by CDMA and OFDMA. Also,

TDMA and CDMA can approximate all three commonly used

radar pulses reasonably well. The main contributions of this

work can be summarized as follows.

• Most previous works on dual-functional waveform de-

signs mainly use the communications signal from one

user in one bit interval, while our work uses communica-

tions signals from multiple users in multiple bit intervals.

When multiple users are considered, [24] - [26] explore

the orthogonality in the space domain, while our work

explores the orthogonality in the time, code or frequency

domains.

• Previous works implement dual-functional waveforms

by either embedding the communication symbol into

the radar waveform, beamforming an antenna array to

generate different beam patterns for radar and communi-

cations, or modulating the same carrier with both radar

and communications waveforms. Our work proposes a

new method of approximating the radar waveform using

multiple communications signals multiplexed in time,

code and frequency so that the overall waveform can be

used for radar function, while its individual parts can be

used for communications.

• The optimum combinations of communications signals

and the optimum approximations are derived and com-

pared with the exact radar pulses.

• The proposed approximations have very high accu-

racy and thus, they can offer an efficient joint radar-

communication design.

The rest of the paper is organized as follows. In Section

II, the system model of the work will be introduced. Section

III will derive the optimum combination of communications

signals to approximate the radar pulses. In Section IV, nu-

merical results will be provided to verify the accuracy of the

approximation. Finally, in Section V, concluding remarks will

be made.

II. SYSTEM MODEL

Consider a joint radar-communication system with one

central controller or base station. The base station acts as

a mono-static radar station that transmits a radar pulse and

receives the returned radar pulse for target detection. Although

the mono-static radar is assumed in the following, the results

can be applied to bi-static and multi-static radars too, as long

as the radar transmitter is collocated with the communications

transmitter and multiple signals are available to enable the

linear combination. To integrate the communication function

into the radar function, it also acts as an access point to

serve K communications users by transmitting signals in the

downlink to receivers at K communications users, K > 1.

Thus, the signals for the K communications users must be

combined with or embedded in the radar pulse in the joint

radar-communication setting. Assume that the radar pulse

has a duration of T with a bandwidth of B. Also, assume

that each bit of the communications signals occupies a time

interval of Tb. Since the radar pulse repetition frequency is

normally much smaller than the data rate in communications

systems, we assume that T = Tb ∗ L, or there are L bits of

communications signals within each radar pulse, L > 1.

For the radar pulse, one widely used waveform is the LFM

pulse. The baseband representation of a LFM pulse is given

by [27]

r(t) = ejπ
B

T
t2 , 0 < t < T. (1)

Also, the Gaussian pulse and Barker sequence are frequently

used in radar applications. The Gaussian pulse is given by [28]

r(t) = e−
B

T
(t−T

2
)2 , 0 < t < T, (2)

which is centered at t = T
2 . The Barker sequence is given by
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[29]

r(t) =

M−1
∑

m=0

bma(t−mH), 0 < t < T (3)

where M is the length of the Barker code, bm is the value of

the Barker code, H = T
M

is the duration of each code, and

a(t) = ǫ(t)− ǫ(t−H) with ǫ(t) being the unit step function

so that ǫ(t) = 1 when t > 0 and ǫ(t) = 0 when t < 0.

For the multiple communications users, to avoid mutual

interference so that only the desired signal is recovered at the

designated communications receiver, their signals are usually

transmitted over orthogonal resource blocks using multiplex-

ing. One widely used multiplexing method is TDMA, where

signals for different communications users are transmitted in

different time slots. For TDMA, the communication pulse in

the l-th bit of the k-th user is given by

gkl(t) = ǫ

(

t−

(

l +
k − 1

K

)

Tb

)

− ǫ

(

t−

(

l +
k

K

)

Tb

)

(4)

where l = 0, 1, · · · , L−1, k = 1, 2, · · · ,K and ǫ(t) is the unit

step function defined as before. Effectively, each bit interval

of Tb has been divided into K time slots, where the signal for

the k-th user is transmitted in the k-th time slot during each

bit. These time slots are orthogonal with each other.

Alternatively, CDMA can be used. In this case, the com-

munication pulse in the l-th bit of the k-th user is given by

gkl(t) =
I

∑

i=1

dki

[

ǫ

(

t−

(

l +
i− 1

I

)

Tb

)

−ǫ

(

t−

(

l +
i

I

)

Tb

)]

(5)

where dki is the spreading code of the i-th chip for the k-th

user, I is the processing gain or the length of the spreading

sequence, l and ǫ(t) are defined as before. In this case, the

spreading sequences are orthogonal for different users, as their

inner products are normally zero. We will consider the Walsh

codes in our work. Note that the Walsh codes normally allow a

maximum of I orthogonal codes so that one must have K < I .

Another multiplexing option is OFDMA, where signals for

different users are transmitted over different subcarriers. In

this case, the communication pulse in the l-th bit of the k-th

user is given by

gkl(t) = ej2πfk(t−lTb) [ǫ(t− lTb)− ǫ(t− (l + 1)Tb)] (6)

where fk = k∆f , and ∆f = 1
Tb

to ensure orthogonality

between different users.

In a pure communications system, at the base station, the

communications signals of all the L bits for all the K users

are effectively added together in the time domain so that the

overall transmitted signal over a period of T is given by

p(t) =

K
∑

k=1

L−1
∑

l=0

gkl(t), 0 < t < T. (7)

At the communications receivers, the k-th user will receive

p(t) in (7) but it will be able to extract its own signal by using

either the k-th time slot, spreading code or subcarrier from

p(t) due to orthogonality with other users. Then, with perfect

time synchronization, the l-th data bit can be decoded using

the l-th bit interval of the extracted signal. Thus, the overall

communications signal can be represented as a summation of

all L bits for all K users in (7).

In a joint radar-communications system, one can use a

summation similar to (7) to generate the communications

signals at the base station, but the communications signals

for different bits and different users within the radar pulse

duration can also be linearly combined to generate a radar

pulse. Specifically, the communications signals can be linearly

combined as

s(t) =

K
∑

k=1

L−1
∑

l=0

cklgkl(t), 0 < t < T (8)

where ckl are the linear weighting coefficients to be deter-

mined, with k = 1, 2, · · · ,K and l = 0, 1, · · · , L − 1, to

approximate the radar pulse r(t). Since the orthogonality and

synchronization are not affected by linear combination, the

signal in (8) can still be used for information decoding at the

communications receivers. The aim of this work is to find

the best coefficients of ckl for s(t) that can approximate r(t)
as closely as possible. Once this is done, s(t) can be used

not only as a radar pulse by the radar receiver but also as

information signals by the communications receivers. Define

W =

∫ T

0

|s(t)− r(t)|2dt (9)

as the mean squared error (MSE) between s(t) in (8) and the

radar pulse r(t). The goal is to find the optimum coefficients

that minimize W . This will allow the base station to transmit

a pulse that overall is a radar pulse for target detection while

each component of the pulse delivers information of different

data bits for different communications users.

III. OPTIMIZATION

A. Without constraints

Using (8) in (9), the MSE can be rewritten as

W =

∫ T

0

∣

∣

∣

∣

∣

K
∑

k=1

L−1
∑

l=0

cklgkl(t)− r(t)

∣

∣

∣

∣

∣

2

dt (10)

which is a quadratic form of ckl. Denote c =
[c0, · · · , cl, · · · , cL−1] with cl = [c1l, c2l, · · · , ckl, · · · , cKl]
for l = 0, 1, · · · , L − 1. Also, denote g(t) =
[g0(t), · · · ,gl(t), · · · ,gL−1(t)]

P with gl(t) =
[g1l(t), g2l(t), · · · , gkl(t), · · · , gKl(t)]

P , where (·)P denotes

the transpose operation. Then, one has

W =

∫ T

0

|cg(t)− r(t)|2dt. (11)

The above equation can be further expanded as

W =

∫ T

0

cg(t)g(t)HcHdt+

∫ T

0

|r(t)|2dt

−

∫ T

0

r(t)g(t)HdtcH − c

∫ T

0

g(t)r∗(t)dt (12)
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where (·)H is the Hermitian operation. Denote Q =
∫ T

0
g(t)g(t)Hdt and G =

∫ T

0
r(t)g(t)Hdt. Then, (12) can

be transformed into

W = cQcH −GcH − cGH +

∫ T

0

|r(t)|2dt. (13)

Thus, the minimization of W with respect to c is a standard

quadratic optimization problem, and the optimum coefficient

is given by

copt = GQ−1. (14)

In this case, the minimum MSE is

Wmin =

∫ T

0

|r(t)|2dt−GQ−1GH (15)

and the optimum pulse to approximate the radar pulse r(t)
using communications signals over all bits for all users is given

by

sopt(t) = GQ−1g(t). (16)

This is the general case when the communication signal gkl(t)
is not time-limited in each bit interval.

In our work, the communication signal for the l-th bit

is time-limited between lTb and (l + 1)Tb. For example,

the OFDMA signal in (6) is only nonzero between lTb and

(l+1)Tb due to the unit step functions. This is often the case to

avoid inter-symbol interference. If the communications signal

is time-limited for each bit, one has
∫ T

0

gk′l′(t)g
∗
kl(t)dt = 0, (17)

when (·)∗ is the conjugate operation, and l 6= l′ for k, k′ =
1, 2, · · · ,K, or the communications signals are orthogonal for

different bits. It can be verified using (4), (5) and (6) that the

TDMA, CDMA and OFDMA signals all satisfy (17). In this

case, Q in (14) becomes a diagonal block matrix, where the

K×K block matrices on the diagonal line are non-zero, while

all other block matrices off the diagonal line are zero. Then,

one has

c
opt
l = GlQ

−1
l (18)

for l = 0, 1, · · · , L − 1, where Ql is the l-th K ×
K block matrix on the diagonal line of Q with Ql =
∫ (l+1)Tb

lTb

gl(t)g
H
l (t)dt and Gl =

∫ (l+1)Tb

lTb

r(t)gl(t)
Hdt. The

minimum MSE and the optimum pulse can also be simplified

as

Wmin =

∫ T

0

|r(t)|2dt−

L−1
∑

l=0

GlQ
−1
l GH

l (19)

and

sopt(t) =

L−1
∑

l=0

GlQ
−1
l gl(t) (20)

respectively.

Further, if gkl(t) and gk′l(t) are not only time-limited

for each bit, as in (17), but also orthogonal, one has
∫ T

0
gkl(t)g

∗
k′l(t)dt for k 6= k′ and l = 0, 1, · · · , L − 1.

The TDMA, CDMA and OFDMA signals all satisfy this.

For example, since
∑I

i=1 dkidk′i = 0, integrations over the

product of any two signals given in (5) give zero for k 6= k′.

In this case, Ql becomes a diagonal matrix with non-zero

elements only on the diagonal line as

Ql =









∫ (l+1)Tb

lTb

|g1l(t)|
2dt . . . 0

...
. . .

...

0 . . .
∫ (l+1)Tb

lTb

|gKl(t)|
2dt









.

(21)

Using (21) in (18) - (20), they can be further simplified as

c
opt
kl =

∫ (l+1)Tb

lTb

r(t)g∗kl(t)dt
∫ (l+1)Tb

lTb

|gkl(t)|2dt
, (22)

Wmin =

∫ T

0

|r(t)|2dt−
K
∑

k=1

L−1
∑

l=0

|
∫ (l+1)Tb

lTb

r(t)g∗kl(t)dt|
2

∫ (l+1)Tb

lTb

|gkl(t)|2dt
(23)

and

sopt(t) =
K
∑

k=1

L−1
∑

l=0

gkl(t)
∫ (l+1)Tb

lTb

r(t)g∗kl(t)dt
∫ (l+1)Tb

lTb

|gkl(t)|2dt
. (24)

By substituting the TDMA, CDMA and OFDMA signals in

(4) - (6) into (22) - (24), the results for TDMA, CDMA and

OFDMA can be obtained. Specifically, for TDMA, one has

c
opt
kl =

K

Tb

∫ (l+ k

K
)Tb

(l+ k−1

K
)Tb

r(t)dt, (25)

Wmin =

∫ T

0

|r(t)|2dt−
K

Tb

K
∑

k=1

L−1
∑

l=0

|

∫ (l+ k

K
)Tb

(l+ k−1

K
)Tb

r(t)dt|2

(26)

and

sopt(t) =
K

Tb

K
∑

k=1

L−1
∑

l=0

∫ (l+ k

K
)Tb

(l+ k−1

K
)Tb

r(t)dt (27)

[ǫ

(

t−

(

l +
k − 1

K

)

Tb

)

− ǫ

(

t−

(

l +
k

K

)

Tb

)

].

Similarly, for CDMA, one has

c
opt
kl =

1

Tb

I
∑

i=1

dki

∫ (l+ i

I
)Tb

(l+ i−1

I
)Tb

r(t)dt, (28)

Wmin =

∫ T

0

|r(t)|2dt−
1

Tb

K
∑

k=1

L−1
∑

l=0

|

I
∑

i=1

dki

∫ (l+ i

I
)Tb

(l+ i−1

I
)Tb

r(t)dt|2

(29)

and

sopt(t) =
1

Tb

K
∑

k=1

L−1
∑

l=0

I
∑

i=1

dki

∫ (l+ i

I
)Tb

(l+ i−1

I
)Tb

r(t)dt

I
∑

i=1

dki

[

ǫ

(

t−

(

l +
i− 1

I

)

Tb

)

−ǫ

(

t−

(

l +
i

I

)

Tb

)]

. (30)

For OFDMA, one has

c
opt
kl =

1

Tb

∫ (l+1)Tb

lTb

r(t)e−j2πfk(t−lTb)dt, (31)
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Wmin =

∫ T

0

|r(t)|2dt−
1

Tb

K
∑

k=1

L−1
∑

l=0

|

∫ (l+1)Tb

lTb

r(t)e−j2πfk(t−lTb)dt|2 (32)

and

sopt(t) =
1

Tb

K
∑

k=1

L−1
∑

l=0

∫ (l+1)Tb

lTb

r(t)e−j2πfk(t−lTb)dt

ej2πfk(t−lTb) [ǫ(t− lTb)− ǫ(t− (l + 1)Tb)] . (33)

One can substitute the radar pulse r(t) given by (1) - (3) in

the above equations for further simplification. The accuracy

of these optimum coefficients will be examined later.

B. With constraints

In the above subsection, the MSE between s(t) and the

radar pulse r(t) is minimized without any constraints on

the communications signals. This is suitable for joint radar-

communication applications where the radar function is the

primary function so that the accuracy of the approximation is

of utmost importance. In other applications, the communica-

tion function can be the primary function so that the quality of

the communications signals cannot be degraded by the linear

combination to maintain the same quality of service as the

case without linear combination. In this case, constraints on

s(t) must be imposed.

The main quality indicator of a communications signal is

the signal-to-noise ratio (SNR). For the pure communications

system without radar pulse approximation, from (7), the signal

of the k-th user is given by pk(t) =
∑L−1

l=0 gkl(t) with 0 <

t < T . Thus, the SNR of the k-th user is

γk =

∑L−1
l=0

∫ T

0
|gkl(t)|

2dt

σ2
, (34)

where σ2 is the noise power. For the communications signals

discussed before, one has
∫ T

0
|gkl(t)|

2dt = Tb

K
for TDMA and

∫ T

0
|gkl(t)|

2dt = Tb for CDMA and OFDMA. Thus, the SNR

becomes γk = LTb

Kσ2 for TDMA and γk = LTb

σ2 for CDMA

and OFDMA. For the joint radar-communication systems, the

SNR of the k-th user can be calculated from (8) as

γk =

∑L−1
l=0 |ckl|

2
∫ T

0
|gkl(t)|

2dt

σ2
. (35)

Thus, they become γk =
∑

L−1

l=0
|ckl|

2Tb

Kσ2 for TDMA and γk =
∑

L−1

l=0
|ckl|

2Tb

σ2 for CDMA and OFDMA. Thus, to maintain the

quality of the communications signals and ensure that the com-

munications signals are not degraded by linear combination,

the two SNRs in (34) and (35) should equal to each other to

give
L−1
∑

l=0

|ckl|
2 = L, k = 1, 2, · · · ,K (36)

for the considered TDMA, CDMA and OFDMA communica-

tions signals. The constraint in (36) ensures that the SNR of

the communications signal in the joint radar-communication

system with linear combination is the same as that in the

pure communication system without linear combination so that

the linear combination in the dual-functional waveform design

does not degrade the communications performance, as it is

possible that the linear combination may choose coefficients

of ckl that minimizes the MSE but makes (35) smaller than

(34) to sacrifice the communications performance for approx-

imation accuracy, if there is no restriction. Equation (36)

eliminates this possibility. Thus, this constraint in (36) is used

to guarantee that the quality of communications will not be

degraded by linear combination, not the successful decoding of

communications signals. To guarantee the successful decoding

of communications signals, one may impose a pre-defined

threshold on (35) or (34) against the noise but this is beyond

the scope of the work.

The optimization problem then becomes

min
c

{W}, s.t.
L−1
∑

l=0

|ckl|
2 = L, k = 1, 2, · · · ,K. (37)

This is a quadratic optimization with quadratic constraints

problem. From (37), the constraints are not convex, as
∑L−1

l=0 |ckl|
2 = L is equivalent to

∑L−1
l=0 |ckl|

2 ≤ L and
∑L−1

l=0 |ckl|
2 ≥ L. Thus, (37) is not convex either [30].

However, solutions may still be found for some special cases.

In particular, when all the communications signals are time-

limited over each bit, as in (17), Q becomes a diagonal block

matrix such that the MSE can be simplified as

W =

L−1
∑

l=0

[clQlc
H
l −Glc

H
l − clG

H
l ] +

∫ T

0

|r(t)|2dt. (38)

Then, using the Lagrange multiplier, the optimization problem

in (37) is reformulated as

min
c,µ

{

L−1
∑

l=0

[clQlc
H
l −Glc

H
l −clG

H
l ]+

K
∑

k=1

µk(

L−1
∑

l=0

|ckl|
2−L)}

(39)

where µ = [µ1, · · · , µK ]. The optimization over c is solved

first. Since the last term
∑K

k=1 µkL does not depend on c,

only the first two terms of the objective function in (39) need

to be considered for the optimization over c. In this case,

since the addition operation is linear, the optimization in (39)

is equivalent to the minimization of the l-th term as

min
cl|µ

{clQlc
H
l −Glc

H
l − clG

H
l +

K
∑

k=1

µk|ckl|
2} (40)

where ·|µ means the optimization given fixed values of µ.

Denote Λ =







µ1 . . . 0
...

. . .
...

0 . . . µK






. The optimization in (40)

becomes

min
cl|µ

{cl [Ql +Λ] cHl −Glc
H
l − clG

H
l } (41)

which is a standard quadratic optimization problem with

optimum coefficients satisfying

c
opt
l = Gl [Ql +Λ]

−1
. (42)
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This is not a final solution due to the dependence of the

optimum coefficients on the unknown Lagrange multipliers µ.

However, when the communications signals are also orthogo-

nal for different users, Ql becomes a diagonal matrix too as

in (21). In this case, from (42), the optimum coefficient can

be calculated as

c
opt
kl =

∫ (l+1)Tb

lTb

r(t)g∗kl(t)dt

µk +
∫ (l+1)Tb

lTb

|gkl(t)|2dt
(43)

for k = 1, 2, · · · ,K and l = 0, 1, · · · , L− 1. Further, one can

substitute the optimum c given by (42) into (39) to have

min
µ

{−

L−1
∑

l=0

Gl [Ql +Λ]
−1

GH
l − L

K
∑

k=1

µk} (44)

which is an optimization over µ only now. When the commu-

nications signals are orthogonal for different users, this can be

rewritten as

min
µ

{−

L−1
∑

l=0

K
∑

k=1

|
∫ (l+1)Tb

lTb

r(t)g∗kl(t)dt|
2

µk +
∫ (l+1)Tb

lTb

|gkl(t)|2dt
− L

K
∑

k=1

µk}. (45)

One sees that each µk can be optimized separately. By taking

the first-order derivative of the k-th term in the objective

function in (45) with respect to µk, letting the derivative be

zero and solving the equation for µk, one can obtain

L−1
∑

l=0

∣

∣

∣

∣

∣

∣

∫ (l+1)Tb

lTb

r(t)g∗kl(t)dt

µk +
∫ (l+1)Tb

lTb

|gkl(t)|2dt

∣

∣

∣

∣

∣

∣

2

= L (46)

for k = 1, · · · ,K, which can be solved to find the k-th

Lagrange multiplier. Alternatively, one can use the constraint

on the SNR in (36) directly to find (45). They are equivalent.

Denote the solution to (46) as µ
opt
k . The optimum coefficient

is then calculated as

c
opt
kl =

∫ (l+1)Tb

lTb

r(t)g∗kl(t)dt

µ
opt
k +

∫ (l+1)Tb

lTb

|gkl(t)|2dt
(47)

for k = 1, 2, · · · ,K and l = 0, 1, · · · , L − 1, where µk has

been replaced by µ
opt
k .

For the TDMA signal,
∫ (l+1)Tb

lTb

|gkl(t)|
2dt = Tb

K
. For the

CDMA and OFDMA signals,
∫ (l+1)Tb

lTb

|gkl(t)|
2dt = Tb. All

of them are constants independent of l. Using this fact in (46),

the equation can be solved for µk and the solution is then used

in (47) to give

c
opt
kl =

∫ (l+1)Tb

lTb

r(t)g∗kl(t)dt
√

1
L

∑L−1
l=0

∣

∣

∣

∫ (l+1)Tb

lTb

r(t)g∗kl(t)dt
∣

∣

∣

2
(48)

for k = 1, 2, · · · ,K and l = 0, 1, · · · , L− 1. Then using (48)

in W , the minimum MSE can be calculated as

Wmin =

∫ T

0

|r(t)|2dt+

L−1
∑

l=0

K
∑

k=1

|
∫ (l+1)tb
lTb

r(t)g∗kl(t)dt|
2

√

1
L

∑L−1
l=0

∣

∣

∣

∫ (l+1)Tb

lTb

r(t)g∗kl(t)dt
∣

∣

∣

2

[

∫ (l+1)Tb

lTb

|gkl(t)|
2dt

√

1
L

∑L−1
l=0

∣

∣

∣

∫ (l+1)Tb

lTb

r(t)g∗kl(t)dt
∣

∣

∣

2
− 2]. (49)

The optimum pulse is obtained by using (48) in (8) to give

sopt(t) =
K
∑

k=1

L−1
∑

l=0

gkl(t)
∫ (l+1)Tb

lTb

r(t)g∗kl(t)dt
√

1
L

∑L−1
l=0

∣

∣

∣

∫ (l+1)Tb

lTb

r(t)g∗kl(t)dt
∣

∣

∣

2
,

0 < t < T. (50)

Comparing (50) with (24), one sees that the calculation of the

approximate pulse in (24) without SNR constraint requires

2KL multiplications, KL divisions, KL squaring, 2KL in-

tegrations and KL additions, while the calculation of the

approximate pulse in (50) with SNR constraint requires 2KL

multiplications, KL+1 divisions, KL squaring, KL integra-

tions and KL2 additions, and KL square rooting, for each

time instant. The computational complexity is proportional to

K and L. For compactness, the optimum values for TDMA,

CDMA and OFDMA are not given there but they can be easily

obtained by replacing gkl(t) in (48) - (50) with the relevant

signals given in (4) - (6).

Comparing the optimum coefficients for the unconstrained

case in (22) with the optimum coefficients for the constrained

case in (48), one sees that the constraint on the SNR in (36)

leads to the denominator in (48). This constraint is essentially a

normalization operation over the coefficients given in (22) for

the unconstrained case, in order to satisfy the SNR constraint

in (36) while minimize the MSE. In the next section, numerical

examples will be given to show the accuracy of using (8) to

approximate r(t) at the base station.

IV. NUMERICAL RESULTS AND DISCUSSION

In this section, numerical examples are presented to

show the accuracy of the proposed approximation to radar

pulses. Three commonly used radar pulses are examined,

the LFM pulse in (1), the Gaussian pulse in (2) and

the Barker sequence in (3). For the Barker sequence,

the Barker-13 sequence is used, where M = 13 and

b = [+1,+1,+1,+1,+1,−1,−1,+1,+1,−1,+1,−1,+1]
for different bm. The bandwidth of the radar waveform is set

to 1 MHz with a time-bandwidth product of 100 so that the

radar pulse duration is T = 10−4 seconds. Also, three different

types of communications signals are used, the TDMA signal

in (4) that achieves user orthogonality in the time domain, the

CDMA signal in (5) that achieves user orthogonality in the

code domain, and the OFDMA signal in (6) that achieves user

orthogonality in the frequency domain. The processing gain of

CDMA is set to I = 8. In the following figures, the title of
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TDMA approximating LFM,K=5,L=100,B=1 MHz

Fig. 1. Comparison of the exact radar LFM pulse (solid line) and the
approximated LFM pulse (dotted line) using the TDMA signals.
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A scaling factor of 0.3540 will 

give the same results as        

the subfigure above             

Fig. 2. Comparison of the exact radar Gaussian pulse (solid line) and the
approximated Gaussian pulse (dotted line) using the TDMA signals.

”without constraints” refers to curves obtained by using (24),

while the title ”with constraints” refers to curves obtained by

using (50).

Figs.1 - 3 compare the exact radar pulses with the approxi-

mate radar pulses for LFM, Gaussian and Barker, respectively,

using the TDMA signals. The upper part of each figure uses

the optimization without SNR constraint, while the lower part

of each figure uses the optimization with SNR constraint. In

these figures, K = 5 and L = 100. Two observations can

be made. Firstly, the optimization without constraint derived

in Section III.A generates very accurate approximation to

the exact radar pulse in all three cases. In fact, there is

almost a perfect match between the solid lines and the dotted

lines, except at a few time instants where the dotted lines

are spiky. The dotted lines are spiky at these time instants

because the values of the real part of the waveform at these

time instants are significantly larger or smaller than their

neighboring values, not because there are many different

values for the same time instant. For example, in the upper part

of Fig. 2, the real part of the waveform equals to 0.4542 when

t = 0.53×10−4, while its neighboring values equal to 0.9193

and 0.9083, leading to the spike. These spikes may be reduced

or eliminated by performing smoothing after combining. Thus,

the combined communications signals can be well used to
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TDMA approximating Barker,K=5,L=100,B=1 MHz

Fig. 3. Comparison of the exact radar Barker-13 pulse (solid line) and the
approximated Barker-13 pulse (dotted line) using the TDMA signals.
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Fig. 4. Comparison of the exact radar LFM pulse (solid line) and the
approximated LFM pulse (dotted line) using the CDMA signals.

generate different radar pulses for radar functions. Secondly,

the optimization with SNR constraint derived in Section III.B

has similar accuracy to that without constraint for the LFM

and Barker pulses, but not the Gaussian pulse. Although the

approximated pulse is still Gaussian, as can be seen from Fig.

2, there is considerable mismatch between them. Interestingly,

it is found that the approximated Gaussian pulse and the exact

Gaussian pulse has a fixed ratio of 2.8, which means that the

Gaussian radar pulse can still be accurately generated even

with the SNR constraint by first using (50) and then a scaling

of 0.36.

Figs. 4 - 6 compare the exact radar pulse with the ap-

proximated pulse using the CDMA signals. Again, the upper

part refers to optimization without constraint, while the lower

part refers to optimization with constraint, when K = 5 and

L = 100. For the optimization without constraint in the upper

parts of these figures, there is almost perfect match between

the exact pulse and the approximated pulse other than a few

spiky time instants, very similar to the TDMA signals. For

the optimization with SNR constraint in the lower parts of

these figures, the approximated LFM pulse can still track the

trend of the exact LFM pulse but its values are too large in

general, the approximated Barker pulse has very good match

with the exact Barker pulse in the flat areas but very spiky in
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Fig. 5. Comparison of the exact radar Gaussian pulse (solid line) and the
approximated Gaussian pulse (dotted line) using the CDMA signals.
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Fig. 6. Comparison of the exact radar Barker-13 pulse (solid line) and the
approximated Barker-13 pulse (dotted line) using the CDMA signals.

the transitional areas, while the approximated Gaussian pulse

becomes a mixture of Gaussian functions and is very far away

from the exact Gaussian pulse.

Fig. 7 compares the exact radar pulse with the approximate

radar pulse using the OFDMA signals without SNR constraint.

From the figure, the LFM pulse can be well approximated, the

Gaussian pulse can be perfectly approximated even without

any spiky time instants, while the Barker pulse cannot be

approximated at all, as the approximated pulse is always 1.

For the optimization with SNR constraint, the results are even

worse than CDMA. They are not shown here to save space.

In general, the accuracy of the radar pulse using the OFDMA

signals is lower than TDMA and CDMA, although OFDMA

is a very popular technology in several cellular and Wi-Fi

standards. This may be caused by the fact that TDMA and

CDMA achieve the orthogonality using time resource blocks

while OFDMA achieves the orthogonality using frequency

resource blocks. In our work, different bits in the time domain

are used to generate the radar pulse. Thus, time orthogonality

is more advantageous than frequency orthogonality. In par-

ticular, TDMA has a fine time resolution of Tb

K
for different

users. To increase the accuracy of OFDMA, different sub-

carriers in the frequency domain may be used to generate the

radar spectrum instead. However, this will be more difficult

than the time domain method, as the radar spectrum is more
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Fig. 7. Comparison of the exact radar pulse (solid line) and the approximate
pulse (dotted line) using the OFDMA signals without SNR constraint.

complicated than the radar pulse for optimization. Due to the

length restriction, this will be investigated in the future.

Note that the approximated Gaussian pulse with SNR

constraint has low accuracy in Figs. 2 and 5. This can be

explained as follows. The approximated pulse without SNR

constraint is given by (24), while the approximated pulse with

SNR constraint is given by (50). Their only difference is the

denominator where (24) has
∫ (l+1)Tb

lTb

|gkl(t)|
2dt (51)

while (50) has
√

√

√

√

1

L

L−1
∑

l=0

∣

∣

∣

∣

∣

∫ (l+1)Tb

lTb

r(t)g∗kl(t)dt

∣

∣

∣

∣

∣

2

. (52)

Since the Gaussian pulse without SNR constraint has high

accuracy in Figs. 2 and 5, the low accuracy with SNR

constraint must be caused by the different denominator. Using

the Schwartz inequality, one has
∣

∣

∣

∣

∣

∫ (l+1)Tb

lTb

r(t)g∗kl(t)dt

∣

∣

∣

∣

∣

2

≤

∫ (l+1)Tb

lTb

|r(t)|2dt

∫ (l+1)Tb

lTb

|g∗kl(t)|
2dt. (53)

For LFM and Barker pulses, they have constant amplitudes

so that
∫ (l+1)Tb

lTb

|r(t)|2dt = Tb from (1) and (3). However,

for the Gaussian pulse,
∫ (l+1)Tb

lTb

|r(t)|2dt < Tb as r(t) < 1
from (2). This makes the denominator in (50) much smaller

than the denominator in (24) for the Gaussian pulse, or the

approximated pulse in (50) much larger than that in (24).

Indeed, from Figs. 2 and 5, the approximated Gaussian pulse

with SNR constraint is always larger than the exact pulse or

the approximated Gaussian pulse without SNR constraint. In

general, radar detection prefers constant modulus pulse to non-

constant modulus pulse.

Figs. 8 and 9 compare the magnitude of the normalized

ambiguity functions of the pulses approximated using TDMA,

CDMA and OFDMA without and with SNR constraint, re-

spectively. For the case without SNR constraint in Fig. 8,
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Fig. 8. Comparison of the magnitude of the normalized ambiguity functions
of the approximated LFM pulses using TDMA, CDMA and OFDMA without
SNR constraint.

Fig. 9. Comparison of the magnitude of the normalized ambiguity functions
of the approximated LFM pulses using TDMA, CDMA and OFDMA with
SNR constraint.

the ambiguity functions for TDMA, CDMA and OFDMA are

almost identical and can be shown to be similar to that of the

exact pulse. This agrees with observations from Figs. 1, 4 and

7. For the case with SNR constraint in Fig. 9, the ambiguity

function of TDMA is the same as the case without SNR

constraint, which can also be seen from Fig. 1. The ambiguity

functions of CDMA and OFDMA have bigger gaps between

peaks for different delays, although the overall shape is still

the same as the case without SNR constraint.

Figs. 10 - 12 show the effects of different system parameters

on the accuracy of the generated radar pulses for the MSE

minimization without SNR constraint. The accuracy is repre-

sented by the normalized minimum MSE, which is obtained

by normalizing the minimum MSE given in (26), (29) and

(32) with the radar pulse energy of
∫ T

0
|r(t)|dt. The result for

Barker pulse is not given in Fig. 12 as its MSE is too large to

be shown.

From Fig. 10, one sees that the normalized minimum

MSE decreases when L increases. This is expected. When

L increases, for a fixed radar pulse duration T , the bit interval

decreases as Tb = T
L

. This reduces the time slot of Tb

K

within each bit allocated to different communications users

too, making its time resolution finer when considering the

orthogonal time functions in (4) as an orthonormal basis that

decomposes r(t). Hence, the accuracy of generated radar pulse
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Fig. 10. The normalized minimum MSE for TDMA signals.
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Fig. 11. The normalized minimum MSE for CDMA signals.

increases. Also, the accuracy of the generated radar pulse

improves when K increases too for the same reason, as the

time slot of Tb

K
for each user decreases when K increases

to make the orthogonal basis functions finer. Finally, the

Gaussian pulse has the smallest normalized MSE, followed

by the Barker pulse and the LFM pulse. However, all of them

have a normalized minimum MSE of less than 4.5%, showing

how accurately the radar pulse generated using TDMA signals

is.

Similar observations can be made for the CDMA signals

in Fig. 11. Again, the MSE decreases with K and L. The

value of K can be considered as the degree of freedom in the
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Fig. 12. The normalized minimum MSE for OFDMA signals.
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user dimension, while the value of L can be considered as

the degree of freedom in the bit dimension. In this case, most

normalized MSEs are less than 2%, except the LFM pulse

with five users.

Both TDMA and CDMA signals achieve the orthogonality

using either time slots or chips as time resource blocks, while

the OFDMA signal achieves the orthogonality using frequency

resource blocks. Indeed, from Fig. 12, the MSE first increases

then decreases when L increases, unlike Figs. 10 and 11.

The largest MSE is achieved when L is around 140, which

should be avoided. This can be explained as follows. When

L increases, the bit interval Tb decreases, because Tb = T
L

and T = 10−4 seconds is fixed in the simulation. Since

the linear combination is performed over different bits, the

decrease of Tb means the time resolution increases or the time

interval becomes finer to approximate r(t). This reduces the

MSE. On the other hand, when L increases, the frequency

separation ∆f = 1
Tb

= L
T

increases for a fixed T . The

increase of ∆f means the frequency resolution decreases or

the frequency interval becomes more coarse to approximate

r(t). This increases the MSE. The overall MSE is determined

by these two counteracting factors. When L is small, the

frequency resolution must be dominant so that the MSE

increases with L. When L is large, the time resolution must be

dominant so that the MSE decreases with L. The normalized

MSE is less than 8% in all cases.

Also, from Figs. 1 - 7, the optimization without SNR

constraint can almost perfectly generate all the radar pulses

using any of the communications signals considered. This is

the case when the radar function is the primary function in the

joint radar-communication system, while the communications

function is only a secondary use of the joint system so that the

accuracy is of priority. When the communications function is

the primary function of the joint radar-communication system

such that SNR constraint on the communications signal is

imposed, the TDMA signal is the best option to approximate

all three radar pulses, while the CDMA signal only works for

the Barker pulse and the OFDMA signal does not work at all.

However, the optimization with SNR constraint only differs

from the optimization without SNR constraint by a scaling

factor, as explained below.

Comparing the optimum coefficients in (22) with those in

(48), one notices that (48) is actually a scaled version of (22)

with a scaling factor of

Qk =

√

√

√

√

√

1

L

L−1
∑

l=0

∣

∣

∣

∣

∣

∣

∫ (l+1)Tb

lTb

r(t)g∗kl(t)dt
∫ (l+1)Tb

lTb

|gkl(t)|2dt

∣

∣

∣

∣

∣

∣

2

. (54)

The scaling factor Qk depends on the user index k but is in-

dependent of the bit index l. Hence, it is constant for different

bits of the same user. Thus, in the optimization with constraint,

if one increases the amplitude of the communications signals

for the k-th user in (4) - (6) from 1 to Qk, gkl(t) will be

replaced by Qkgkl(t) in Qk so that the scaling factor now

becomes
√

√

√

√

√

1

L

L−1
∑

l=0

∣

∣

∣

∣

∣

∣

∫ (l+1)Tb

lTb

r(t)Qkg
∗
kl(t)dt

∫ (l+1)Tb

lTb

|Qkgkl(t)|2dt

∣

∣

∣

∣

∣

∣

2

= 1. (55)

In this case, the optimum coefficients in the constrained

case become the same as those in (22) in the unconstrained

case. This suggests that the optimization with SNR constraint

can still achieve the same approximation accuracy as the

optimization without SNR constraint by first increasing the

transmission power from 1 to Q2
k for the k-th user and then

combining the communications signals at the transmitter, at

the cost of higher transmission power than the unconstrained

case.

Finally, the above results consider the waveforms of the

communications users only. In practice, the data symbols

of the communications users will occur. In this case, the

communications signal in (7) becomes

p(t) =

K
∑

k=1

L−1
∑

l=0

sklgkl(t) (56)

where skl is the l-th symbol of the k-th user. Using this

signal in the optimization, the optimum coefficient and the

approximated pulse without SNR constraint become

c
opt
kl =

∫ (l+1)Tb

lTb

r(t)s∗klg
∗
kl(t)dt

∫ (l+1)Tb

lTb

|skl|2|gkl(t)|2dt
, (57)

and

sopt(t) =

K
∑

k=1

L−1
∑

l=0

gkl(t)
∫ (l+1)Tb

lTb

r(t)g∗kl(t)dt
∫ (l+1)Tb

lTb

|gkl(t)|2dt
(58)

respectively, and those with SNR constraint become

c
opt
kl =

∫ (l+1)Tb

lTb

r(t)s∗klg
∗
kl(t)dt

√

1
L

∑L−1
l=0

∣

∣

∣

∫ (l+1)Tb

lTb

r(t)s∗klg
∗
kl(t)dt

∣

∣

∣

2
(59)

and

sopt(t) =

K
∑

k=1

L−1
∑

l=0

gkl(t)
∫ (l+1)Tb

lTb

r(t)g∗kl(t)dt
√

1
L

∑L−1
l=0

∣

∣

∣

∫ (l+1)Tb

lTb

r(t)g∗kl(t)dt
∣

∣

∣

2

(60)

respectively, where skl occurred as |skl|
2 in sopt(t) but has

been cancelled out from the fraction. Three observations can

be made.

Firstly, the optimum coefficients ckl in (57) and (59) become

dependent of the symbols skl, when the symbols of the

communications users are considered. This is not an issue,

because the base station has knowledge of all symbols to

calculate the optimum coefficients.

Secondly, the approximate pulses in (58) and (60) become

independent of the symbols skl. This might be an issue for

data transmission, as the communications receiver has no data

symbols to decode, if sopt(t) in (58) or (60) is transmitted.

However, for pilots and reference signals, this may not be
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Fig. 13. The ambiguity functions using TDMA, CDMA, OFDMA when
K = 100 and L = 2 for B = 1MHz.

an issue because they do not need decoding. For example,

in the fourth generation networks, the synchronization often

uses known Zadoff-Chu or m-sequences. The base station

can choose communications users with the same pilot bits to

approximate the pulse in the linear combination. Fig. 13 shows

the ambiguity functions of the approximate LFM pulses from

TDMA, CDMA and OFDMA when K = 100 and L = 2
without SNR constraint in (58). One sees that, with as few as

two pilot bits of the same value, good approximate pulses can

be obtained. The transmitted pulse can be then obtained by

scaling (58) and (60) with the pilot value, as scaling does not

change the correlation property of the ambiguity function.

Finally, if one has to use the data symbols to approximate

the radar pulse, one can use the coefficients in (22) and (48)

by ignoring the data symbols of the communications users, but

can combine the signal for transmission and approximation as

s(t) =

K
∑

k=1

L−1
∑

l=0

sklgkl(t)
∫ (l+1)Tb

lTb

r(t)g∗kl(t)dt
∫ (l+1)Tb

lTb

|gkl(t)|2dt
(61)

in the case without SNR constraint, and

s(t) =

K
∑

k=1

L−1
∑

l=0

sklgkl(t)
∫ (l+1)Tb

lTb

r(t)g∗kl(t)dt
√

1
L

∑L−1
l=0

∣

∣

∣

∫ (l+1)Tb

lTb

r(t)g∗kl(t)dt
∣

∣

∣

2
(62)

in the case with SNR constraint, to have the data symbols for

decoding at the communications receivers, as skl only occurs

once in the overall signal, not in the linear coefficients. The

pulses in (61) and (62) are not optimum any more, due to

the randomness of the data symbols skl. They are not even

LFM, Gaussian or Barker pulses. However, they have similar

ambiguity functions to the approximated LFM, Gaussian or

Barker pulses in (58) and (60). To see this, the ambiguity

function is defined as

χ(τ, f) =

∫ ∞

−∞

s(t)s∗(t− τ)ej2πftdt (63)

where f is the Doppler frequency and τ is the delay. Using

(61) or (62)in this definition, due to the orthogonality of users

and bits, one sees that skl from s(t) will be multiplied with

s∗kl from s∗(t − τ) to become |skl|
2, which is a constant

for constant modulus modulation schemes. Thus, for data

symbols with constant modulus, (61) and (62) can still be used

for target detection. They have the same ambiguity functions

scaled by |skl|
2 as those of (58) and (60) but they do not

approximate the original LFM, Gaussian or Barker pulses.

In summary, the proposed methods can be used for both pi-

lot and information signals. For pilot signals, the approximated

pulses need to be scaled by the pilot value. For information

signals, the approximated pulse is not optimum any more

due to the randomness of information but they still have the

same ambiguity functions as those without considering the

communications symbols.

V. CONCLUSION

In this paper, the problem of dual-functional waveform

design for joint radar-communication systems has been stud-

ied. A new method that combines the signals from multi-

ple communications users in different bit intervals has been

proposed to generate the radar waveform. The accuracy of

the generated radar pulse has been examined for both opti-

mization with SNR constraint and optimization without SNR

constraint. Numerical results have been presented to show

that the optimization without SNR constraint can generate

very accurate radar pulses in almost all the cases considered,

while the optimization with SNR constraint requires scaling

before combination. They have also showed that the TDMA

signal is the best option for generation, and that the Gaussian

pulse is the easiest radar pulse to generate. The approximation

error can be further reduced by increasing the number of

communications users or the number of data bits in the

combination. Future works include the extension of our work

to multi-antenna systems by exploring the additional degree

of freedom in the space domain.
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