205,849 research outputs found

    Harbin: a quantitation PCR analysis tool

    Get PDF
    Objectives: To enable analysis and comparisons of different relative quantitation experiments, a web-browser application called Harbin was created that uses a quantile-based scoring system for the comparison of samples at different time points and between experiments. Results: Harbin uses the standard curve method for relative quantitation to calculate concentration ratios (CRs). To evaluate if different datasets can be combined the Harbin quantile bootstrap test is proposed. This test is more sensitive in detecting distributional differences between data sets than the Kolmogorov–Smirnov test. The utility of the test is demonstrated in a comparison of three grapevine leafroll associated virus 3 (GLRaV-3) RT-qPCR data sets. Conclusions: The quantile-based scoring system of CRs will enable the monitoring of virus titre or gene expression over different time points and be useful in other genomic applications where the combining of data sets are required

    Stir Bar Sorptive Extraction of Volatile Compounds in Vinegar: Validation Study and Comparison With Solid Phase Microextraction

    Get PDF
    Stir bar sorptive extraction was evaluated for analysing volatiles in vinegar. The procedure developed shows detection and quantitation limits, and linear ranges adequate for analysing this type of compounds. The accuracy obtained was close to 100%, with repeatability values lower than 13%. The extraction efficiency is inversely affected by the acetic acid content. Although the absolute areas decrease, the compound area/internal standard area ratio remains constant, so for quantitative analysis, the acetic acid concentration does not affect the analytical data. The method was compared with a previous SPME method. Similar performance characteristics were obtained for both methodologies, with lower detection and quantitation limits and better repeatability reproducibility values for SBSE. Both analytical methods were used to analyse a variety of vinegars. The results obtained from both methods were in agreemen

    Determination of Creatinine in Human Urine with Flow Injection Tandem Mass Spectrometry

    Get PDF
    Background/Aims: Excretion of urinary compounds in spot urine is often estimated relative to creatinine. For the growing number of liquid chromatography-tandem mass spectrometry (LC-MS/MS) assays of urine-excreted molecules, a fast and accurate method for determination of creatinine is needed. Methods: A high-throughput flow injection tandem mass spectrometry method for exact quantitation of creatinine in urine has been developed and validated. Sample preparation used only two-step dilution for protein precipitation and matrix dilution. Flow injection analysis without chromatographic separation allowed for total run times of 1 min per sample. Creatinine concentrations were quantitated using stable isotope dilution tandem mass spectrometry. Selectivity and coelution-free quantitation were assured by qualifier ion monitoring. Results: Method validation revealed excellent injection repeatability of 1.0% coefficient of variation (CV), intraday precision of 1.2% CV and interday precision of 2.4% CV. Accuracy determined from standard addition experiments was 106.1 +/- 3.8%. The linear calibration range was adapted to physiological creatinine concentrations. Comparison of quantitation results with a routinely used method (Jaffe colorimetric assay) proved high agreement (R-2 = 0.9102). Conclusions: The new method is a valuable addition to the toolbox of LC-MS/MS laboratories where excretion of urinary compounds is studied. The `dilute and shoot' approach to isotope dilution tandem mass spectrometry makes the new method highly accurate as well as cost-and time-efficient. Copyright (C) 2012 S. Karger AG, Base

    Enhanced 3-epi-25-hydroxyvitamin D3 signal leads to overestimation of its concentration and amplifies interference in 25-hydroxyvitamin D LC-MS/MS assays

    Get PDF
    Background 3-epi-25-hydroxyvitamin D3 (3-epi-25OHD3) interferes in most liquid chromatography-tandem mass spectrometry (LC-MS/MS) assays for 25-hydroxyvitamin D (25OHD). The clinical significance of this is unclear, with concentrations from undetectable to 230 nmol/L reported. Many studies have quantified 3-epi-25OHD3 based on 25OHD3 calibrators or other indirect methods, and we speculated that this contributes to the observed variability in reported 3-epi-25OHD3 concentrations. Methods We compared continuous MS/MS infusions of 3-epi-25OHD3 and 25OHD3 solutions, spiked both analytes into the same serum matrix and analysed patient samples to assess the effect of three different quantitation methods on 3-epi-25OHD3 concentration. Experiments were performed on an LC-MS/MS system using a phenyl column which does not resolve 3-epi-25OHD3, and a modified method utilizing a Zorbax SB-CN column that chromatographically resolves 3-epi-25OHD3 from 25OHD3. Results A greater 3-epi-25OHD3 signal, compared with 25OHD3, was observed during equimolar post-column continuous infusion of analyte solutions, and following analysis of a serum pool spiked with both analytes. 3-epi-25OHD3 signal enhancement was dependent on mobile phase composition. Compared with 3-epi-25OHD3 calibrators, indirect quantitation methods resulted in up to 10 times as many samples having 3-epi-25OHD3 concentrations ≥ 10 nmol/L, and an approximately fourfold increase in the maximum observed 3-epi-25OHD3 concentration to 95 nmol/L. Conclusions Enhanced 3-epi-25OHD3 signal leads to overestimation of its concentrations in the indirect quantitation methods used in many previous studies. The enhanced signal may contribute to greater interference in some 25OHD LC-MS/MS assays than others. We highlight that equimolar responses cannot be assumed in LC-MS/MS systems, even if two molecules are structurally similar

    A novel, nondestructive, dried blood spot-based hematocrit prediction method using noncontact diffuse reflectance spectroscopy

    Get PDF
    Dried blood spot (DBS) sampling is recognized as a valuable alternative sampling strategy both in research and in clinical routine. Although many advantages are associated with DBS sampling, its more widespread use is hampered by several issues, of which the hematocrit effect on DBS-based quantitation remains undoubtedly the most widely discussed one. Previously, we developed a method to derive the approximate hematocrit from a nonvolumetrically applied DBS based on its potassium content. Although this method yielded good results and was straightforward to perform, it was also destructive and required sample preparation. Therefore, we now developed a nondestructive method which allows to predict the hematocrit of a DBS based on its hemoglobin content, measured via noncontact diffuse reflectance spectroscopy. The developed method was thoroughly validated. A linear calibration curve was established after log/log transformation. The bias, intraday and interday imprecision of quality controls at three hematocrit levels and at the lower and upper limit of quantitation (0.20 and 0.67, respectively) were less than 11%. In addition, the influence of storage and the volume spotted was evaluated, as well as DBS homogeneity. Application of the method to venous DBSs prepared from whole blood patient samples (n = 233) revealed a good correlation between the actual and the predicted hematocrit. Limits of agreement obtained after Bland and Altman analysis were -0.076 and. +0.018. Incurred sample reanalysis demonstrated good method reproducibility. In conclusion, mere scanning of a DBS suffices to derive its approximate hematocrit, one of the most important variables in DBS analysis

    Development and validation of a luminescence-based, medium-throughput assay for drug screening in Schistosoma mansoni

    Get PDF
    Schistosomiasis, one of the world's greatest neglected tropical diseases, is responsible for over 280,000 human deaths per annum. Praziquantel, developed in the 1970s, has high efficacy, excellent tolerability, few and transient side effects, simple administration procedures and competitive cost and it is currently the only recommended drug for treatment of human schistosomiasis. The use of a single drug to treat a population of over 200 million infected people appears particularly alarming when considering the threat of drug resistance. Quantitative, objective and validated methods for the screening of compound collections are needed for the discovery of novel anti-schistosomal drugs. METHODOLOGY/PRINCIPAL FINDINGS: The present work describes the development and validation of a luminescence-based, medium-throughput assay for the detection of schistosomula viability through quantitation of ATP, a good indicator of metabolically active cells in culture. This validated method is demonstrated to be fast, highly reliable, sensitive and automation-friendly. The optimized assay was used for the screening of a small compound library on S. mansoni schistosomula, showing that the proposed method is suitable for a medium-throughput semi-automated screening. Interestingly, the pilot screening identified hits previously reported to have some anti-parasitic activity, further supporting the validity of this assay for anthelminthic drug discovery. CONCLUSIONS: The developed and validated schistosomula viability luminescence-based assay was shown to be successful and suitable for the identification of novel compounds potentially exploitable in future schistosomiasis therapies

    ProteoClade: A taxonomic toolkit for multi-species and metaproteomic analysis

    Get PDF
    We present ProteoClade, a Python toolkit that performs taxa-specific peptide assignment, protein inference, and quantitation for multi-species proteomics experiments. ProteoClade scales to hundreds of millions of protein sequences, requires minimal computational resources, and is open source, multi-platform, and accessible to non-programmers. We demonstrate its utility for processing quantitative proteomic data derived from patient-derived xenografts and its speed and scalability enable a novel de novo proteomic workflow for complex microbiota samples

    Heat-shock mediated overexpression of HNF1β mutations has differential effects on gene expression in the Xenopus pronephric kidney.

    Get PDF
    The transcription factor HNF1B, encoded by the TCF2 gene, plays an important role in the organogenesis of vertebrates. In humans, heterozygous mutations of HNF1B are associated with several diseases, such as pancreatic β-cell dysfunction leading to maturity-onset diabetes of the young (MODY5), defective kidney development, disturbed liver function, pancreas atrophy, and malformations of the genital tract. The African claw frog Xenopus laevis is an excellent model to study the processes involved in embryogenesis and organogenesis, as it can be manipulated easily with a series of methods. In the present study, we overexpressed HNF1β mutants in the developing Xenopus embryo to assess their roles during organogenesis, particularly in the developing pronephric kidney. Towards this goal, we developed a heat-shock inducible binary Cre/loxP system with activator and effector strains. Heat-shock activation of the mutant HNF1B variants P328L329del and A263insGG resulted in malformations of various organs and the affected larvae developed large edemas. Defects in the pronephros were primarily confined to malformed proximal tubules. Furthermore, the expression of the proximal tubule marker genes tmem27 and slc3a1, both involved in amino acid transport, was affected. Both P328L329del and A263insGG downregulated expression of slc3a1. In addition, P328L329del reduced tmem27 expression while A263insGG overexpression decreased expression of the chloride channel clcnk and the transcription factor pax2. Overexpression of two mutant HNF1B derivatives resulted in distinct phenotypes reflected by either a reduction or an enlargement of pronephros size. The expression of selected pronephric marker genes was differentially affected upon overexpression of HNF1B mutations. Based on our findings, we postulate that HNF1B mutations influence gene regulation upon overexpression in specific and distinct manners. Furthermore, our study demonstrates that the newly established Cre/loxP system for Xenopus embryos is an attractive alternative to examine the gene regulatory potential of transcription factors in developing pronephric kidney as exemplified here for HNF1B

    A method for the extraction and quantitation of phycoerythrin from algae

    Get PDF
    A summary of a new technique for the extraction and quantitation of phycoerythrin (PHE) from algal samples is described. Results of analysis of four extracts representing three PHE types from algae including cryptomonad and cyanophyte types are presented. The method of extraction and an equation for quantitation are given. A graph showing the relationship of concentration and fluorescence units that may be used with samples fluorescing around 575-580 nm (probably dominated by cryptophytes in estuarine waters) and 560 nm (dominated by cyanophytes characteristics of the open ocean) is provided
    corecore