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Abstract  17 

Objectives   18 

To enable analysis and comparisons of different relative quantitation experiments, a web-19 

browser application called Harbin was created that uses a quantile-based scoring system for 20 

the comparison of samples at different time points and between experiments.  21 

Results  22 

Harbin uses the standard curve method for relative quantitation to calculate concentration 23 

ratios (CRs). To evaluate if different datasets can be combined the Harbin quantile bootstrap 24 

test is proposed. This test is more sensitive in detecting distributional differences between 25 
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data sets than the Kolmogorov-Smirnov test. The utility of the test is demonstrated in a 26 

comparison of three grapevine leafroll associated virus 3 (GLRaV-3) RT-qPCR data sets.  27 

Conclusions  28 

The quantile-based scoring system of CRs will enable the monitoring of virus titre or gene 29 

expression over different time points and be useful in other genomic applications where the 30 

combining of data sets are required.  31 

 32 
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Introduction 39 

 40 

Quantitative polymerase chain reaction (qPCR) is a widely used technique to measure 41 

expression levels of nucleic acids. Absolute quantitation uses a fixed calibration curve that 42 

makes comparing different experiments easier, however relative quantitation compensates for 43 

differences in tissue types, environmental conditions, integrity of RNA, loading error and 44 

reaction efficiency. A concentration ratio (CR) can be obtained to compare the concentration 45 

of a gene of interest relative to stable reference genes. A relative quantitation model with an 46 

efficiency correction is recommended since a small difference in target assay efficiency and 47 

reference gene assay efficiency can result in a false expression ratio (Pfaffl 2001; Bester et al. 48 

2014). 49 

One of the most important viral diseases of grapevine worldwide is grapevine leafroll disease 50 

(GLD) with grapevine leafroll-associated virus 3 (GLRaV-3) considered as the main 51 

etiological agent contributing to the disease (Maree et al. 2013). Currently, the complete 52 

genomes of 13 distinct GLRaV-3 isolates representing five of the eight major genetic variant 53 

groups are available (Maree et al. 2015). Little is known about the biological characteristics 54 

of the different GLRaV-3 genetic variants and it is therefore important to investigate whether 55 

there is significant variation between the variant groups beyond the genome. One parameter 56 

to investigate would be the CR of the different groups over time.  57 

The comparison of replicate experiments over time is complicated by differences in the 58 

location, scale and shape of the population distributions, i.e. data with differences in these 59 

parameters are not directly comparable. The most commonly used method to determine the 60 

compatibility of data is to test for shifts in shape (distribution), location (mean) and scale 61 

(variance). To address this, we propose a new bootstrap test for hypothesis against the 62 

location-scale-shape alternative, based on quantiles of the empirical distributions of two data 63 
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sets. This test is not based on any assumptions about the shapes of the distributions, and is 64 

powerful in detecting differences in location, scale and/or shape simultaneously. The 65 

accuracy of this novel test was compared in a Monte Carlo simulation study to the well-66 

known Kolmogorov-Smirnov test (Kolmogorov 1933).  67 

A software tool called Harbin is presented, for the analysis of real-time qPCR data using a 68 

relative quantitation strategy. It allows for the combining of different qPCR data 69 

sets/experiments to enable comparisons of different relative quantitation experiments. Harbin 70 

runs within the R statistical computing environment (R Core Team, 2013) on all major 71 

platforms. It is also freely available as a graphical user interface (GUI) utilizing the Shiny 72 

web-based package that requires no additional software installations. The utility of Harbin 73 

was demonstrated using three GLRaV-3 RT-qPCR data sets to investigate if the data sets can 74 

be combined to study variation in virus variant concentrations. 75 

 76 

Methods  77 

 78 

Plant material  79 

 80 

Three independent sample groups were selected for this study, all consisting of Vitis vinifera 81 

cv. Cabernet Sauvignon plants. The first data set included 30 samples of which 15 samples 82 

were infected with grapevine leafroll associated virus 3 (GLRaV-3) variant group II and 15 83 

samples infected with GLRaV-3 variant group VI. The second data set included 12 plants 84 

singly infected with either variant group I, II, III or VI (three plants each). The third data set 85 

included 37 plants of which seven plants were infected with variant groups I, eight plants 86 

infected with variant group II, eight plants infected with variant group III, eight plants 87 

infected with variant group VI and six plants infected with variant group VII. 88 



 5 

Due to GLRaV-3 being a phloem-limited virus, phloem material from each plant shoot was 89 

collected and stored at −80 °C. Total RNA was extracted from 2 grams of phloem material 90 

using a modified CTAB extraction protocol (Carra et al. 2009; Bester et al. 2014). All plants 91 

were confirmed to be infected with only GLRaV-3 after testing negative for frequently 92 

occurring grapevine viruses using RT-PCRs (Jooste et al. 2015). GLRaV-3 variant group 93 

status of all plants was confirmed using the previously designed real-time RT-PCR high-94 

resolution melting curve analysis assay (Bester et al. 2012). 95 

 96 

RT-qPCRs 97 

 98 

In order to calculate the virus CR in each plant, RT-qPCRs were performed using previously 99 

designed assays targeting ORF1a of GLRaV-3 and three V. vinifera reference genes targeting 100 

actin, alpha-tubulin and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) (Bester et al. 101 

2014). The stability of the reference genes was assessed using BestKeeper (Pfaffl et al. 2004).  102 

 103 

Data analysis 104 

 105 

The Rotor-gene Q software version 2.3.1 (Qiagen) was used to calculate primer efficiencies, 106 

Cq values and gene quantitation values for all targets. For further analysis of the three data 107 

sets, an R based application called Harbin was developed to ease the data handling and 108 

computational aspects. Harbin runs within the R statistical computing environment (R Core 109 

Team, http://www.R-project.org/) on all major platforms, and is available under an open 110 

source licence. Harbin is dependent on base R and additional packages (psych, car, 111 

beeswarm) available from the Comprehensive R Archive Network (CRAN). Harbin is also 112 

available as a graphical user interface (GUI) utilizing the Shiny web-based package. The GUI 113 
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can be used in most web browsers and requires only an Internet connection and no 114 

installation. The Harbin user manual is available for download from within the application or 115 

at https://github.com/Rbester18/Harbin. Harbin has a direct input option for the quantitation 116 

files (.csv) generated by the Rotor-Gene Q software (version 2.3.11 and above). The 117 

application also allows for the upload of Cq values from any other qPCR platform, provided 118 

that a standard curve equation for each gene is available. An example template is available 119 

for download from within the application. Normalisation of the gene of interest 120 

concentrations are performed with a reference gene index, calculated using the geometric 121 

mean of up to ten reference genes. The calculation of fold changes between genes often 122 

entails only limited comparisons of values across two conditions, however the Harbin 123 

application allows for significance testing of two or more groups using either parametric or 124 

non-parametric tests by selecting and classifying individual data points to the number of 125 

groups specified. The non-parametric Wilcoxon rank-sum test can be used to assess 126 

statistically significant differences between samples infected with different variant groups. 127 

The Harbin application and additional information can be used and downloaded at 128 

https://rbester.shinyapps.io/Harbin/ and https://github.com/Rbester18/Harbin. 129 

 130 

Harbin quantile-based bootstrap test 131 

 132 

The Harbin application was used to perform the quantile-based bootstrap test (Harbin-test) to 133 

determine if the three data sets are compatible to be combined. For each data set, the 20th, 134 

40th, 60th and 80th percentiles of the CRs distribution are calculated and assigned a score (1–135 

5). A CR in the lowest quantile (0–20%) is assigned a “1”, and a CR in the highest quantile 136 

(80–100%) is assigned a “5”. If data from a previous experiment is available and the option 137 

to use it as a reference data set is selected, the application will compare the test data to the 138 
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reference data set. The Harbin-test adds the data set to the reference dataset and calculates the 139 

number of CRs in the reference data set for which the “scores” (1–5) have changed. This test 140 

statistic is compared to the distribution of the same statistic calculated from 1000 bootstrap 141 

samples (each of the same size as the test data) drawn from the reference data set.  142 

The purpose of the Harbin-test function is to determine whether the samples in a new data set 143 

are compatible with those in a well-defined reference data set. The combining of different 144 

data sets is performed under the assumption that the samples originate from populations that 145 

can be described by the same probability distribution function. Suppose that 𝒙′ =146 

[𝑥1, . . . . , 𝑥𝑛] and 𝒚′ = [𝑦1, . . . . , 𝑦𝑚] are representative data sets from two continuous 147 

univariate populations, 𝐺𝑟𝑒𝑓 and 𝐹, respectively. It is of interest to determine whether the two 148 

population distributions are homogeneous, or in particular, whether the new data set 𝒚 is 149 

compatible with the reference data set, 𝒙. The hypothesis of interest is 150 

 151 

𝐻0 ∶ 𝐹(𝑥) = 𝐺𝑟𝑒𝑓(𝑥), for all 𝑥 ∈ (−∞,∞),       152 

 (1) 153 

 154 

against the general location-scale-shape alternative, 155 

 156 

𝐻1: 𝐹(𝑥) ≠ 𝐺𝑟𝑒𝑓(𝑥), for some 𝑥 ∈ (−∞,∞),       157 

 (2) 158 

 159 

where 𝐹 and 𝐺𝑟𝑒𝑓 are continuous univariate probability distribution functions describing the 160 

two populations. Hypothesis (2) implies a difference at any point on the two distributions: 161 

The medians, variances and/or shapes of the two distributions differ.  162 
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The Harbin-test is a quantile-based bootstrap test for hypothesis (1) against the general 163 

alternative in (2). The test works as follows: Calculate the 20th, 40th, 60th and 80th percentiles 164 

of 𝒙, indicating these percentiles with 𝑄20, 𝑄40, 𝑄60 and 𝑄80, respectively. Let 𝑔𝑖, 𝑖 =165 

1, . . . . , 𝑛 be a variable taking the values, 166 

 167 

𝑔𝑖 =

{
 
 

 
 

1    if 𝑥𝑖  ≤  𝑄20,
             2    if 𝑄20 < 𝑥𝑖  ≤  𝑄40,
             3    if 𝑄40 < 𝑥𝑖  ≤  𝑄60,
             4    if 𝑄60 < 𝑥𝑖  ≤  𝑄80,

5   if 𝑥𝑖  >  𝑄80.

       168 

 (3) 169 

 170 

Combine the reference and new data sets in a vector, 𝒛′ = [𝒙′𝒚′] and construct a variable, 171 

ℎ𝑖  𝑖 = 1, . . . . , 𝑛, taking the values,  172 

 173 

ℎ𝑖 =

{
 
 

 
 

 1    if 𝑥𝑖  ≤  𝑄20
∗ ,

              2    if 𝑄20
∗ < 𝑥𝑖  ≤  𝑄40

∗ ,

              3    if 𝑄40
∗ < 𝑥𝑖  ≤  𝑄60

∗ ,
              4    if 𝑄60

∗ < 𝑥𝑖  ≤  𝑄80
∗ ,

5   if 𝑥𝑖  >  𝑄80
∗ .

       174 

 (4) 175 

 176 

where 𝑄𝑝
∗  indicates the 𝑝𝑡ℎ percentile of 𝒛. Let 177 

 178 

𝑐𝑖 = {
  0 if 𝑔𝑖 = ℎ𝑖 ,
  1 if 𝑔𝑖 ≠ ℎ𝑖 .

          (5) 179 

 180 

The quantity ∑ 𝑐𝑖 
𝑛
𝑖=1 is thus the number of elements in 𝒙 for which the “scores” (1–5) have 181 

changed in the combined data set, 𝒛. The test statistic for hypothesis (1) is 182 
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 183 

𝑢 =  
1

𝑛
∑ 𝑐𝑖,
𝑛
𝑖=1            (6) 184 

 185 

which is the proportion of the elements in 𝑥 for which the scores have changed in the 186 

combined data set. To find the distribution of 𝑢 under the null hypothesis, 𝑟 = 1000 187 

bootstrap samples (Efron and Tibshirani 1994) of size 𝑚 are drawn from 𝑥. Let 188 

 189 

𝑧0
(𝑗)
= [

𝒙

𝒚𝟎
(𝒋)] , 𝑗 = 1, . . . . , 𝑟,          (7) 190 

 191 

where 𝒚0
(𝑗)

 indicates the 𝑗𝑡ℎ bootstrap sample. Using 𝒙 and 𝒛0
(𝑗)

, the 𝑗𝑡ℎ bootstrap replication 192 

of the test statistic, 𝑢0
(𝑗)

, is calculated as in (6). The null hypothesis in (1) is rejected at a 193 

significance level of 𝛼 if the test statistic in (6) exceeds the 100(1 − 𝛼)𝑡ℎ percentile of 𝒖0
′ =194 

[𝑢0
(1)
, … . , 𝑢0

(𝑟)
]. 195 

Two example data sets are available on github (https://github.com/Rbester18/Harbin) and 196 

will be able to serve as independent reference data sets if the same qPCR protocol and 197 

reagents are used as described in this study. 198 

 199 

Monte Carlo simulation study  200 

 201 

A Monte Carlo simulation study was performed to compare the size and power of the Harbin-202 

test to the Kolmogorov-Smirnov test (Hollander et al. 2013). Compared to the number of 203 

available tests for common location and/or homogeneity of variances for two groups, 204 

relatively few tests have been proposed to test for equality of the population distributions. A 205 
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well-known non-parametric test for the two-sample hypothesis in (1) against the location-206 

scale-shape alternative in (2) is the Kolmogorov-Smirnov test.  207 

The Kolmogorov-Smirnov test compares the empirical distribution functions of two data sets. 208 

If differences in the locations, scales or shapes of the empirical distribution functions are 209 

sufficiently large, the conclusion is made that the two population distribution functions differ. 210 

For the first (“reference database”) group, data sets of sizes 𝑛1 =  10, 30 𝑜𝑟 50 were 211 

simulated from populations with one of the following four distributions: 212 

 1a. Normal: 𝑁(3, 1); 213 

 1b. Chi-squared with three degrees of freedom: 𝑥3
2; 214 

 1c. Uniform distribution on the [0, 6] interval; 215 

 1d. Bimodal: Half of observations from a 𝑁(1.5, 0.752) distribution, with the other 216 

half from a 𝑁(4.5, 0.752) distribution. 217 

For all four of the distribution types, the majority of the observations will thus lie on the 218 

[0, 6] interval, as can be seen in Fig. 1. For the second (“new data”) group, data sets of size 219 

𝑛2 for ratios 
𝑛2

𝑛1
= 0.5, 1 𝑜𝑟 2, were simulated from populations with one of the following four 220 

distribution types: 221 

 2a. Normal: 𝑁(3 + 𝛿, 1𝛾); 222 

 2b. Chi-squared with 3𝛾 degrees of freedom, shifted to the right by addition of the 223 

value 𝛿; i.e.  𝑥3𝛾
2 +  𝛿 224 

 2c. Uniform distribution on the [0, 6𝛾] interval, shifted by addition of the quantity 225 

(−3𝛾 + 3 + 𝛿); 226 

 2d. Bimodal: Half of observations from a 𝑁(1.5 + 𝛿, (0.75𝛾)2) distribution, with the 227 

other half from a 𝑁(1.5 + 3𝛾 + 𝛿, (0.75𝛾)2) distribution. 228 
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The mean shift values, 𝛿 =  0, 0.2, 0.5, 1, 1.5, 2, and standard deviation shift values, 𝛾 =229 

 1, 1.5, 2, were varied to determine the power of the two tests to detect shifts in location and 230 

scale, respectively. For each (n1 : n2 : Distribution 1 type: Distribution 2 type : δ : γ) factorial 231 

treatment combination, a total of 𝑟 = 1000 simulation runs were performed. The simulation 232 

study was performed on the Rhasatsha high-performance computer (HPC) at Stellenbosch 233 

University (http://www.sun.ac.za/hpc), using R (R Core Team, 2013). For each test per 234 

simulation run, a significance level of 5 % was used to decide whether to reject the null 235 

hypothesis. 236 

The Harbin application has the option to apply either the Harbin-test or the Kolmogorov-237 

Smirnov test to test the two-sample hypothesis. If the hypothesis that the two data sets 238 

originated from populations with the same probability distribution function seems plausible, 239 

the Harbin application allows for the option to add the new data set to the reference data set. 240 

The quantile scores of the data in the reference data set will be adjusted according to the new 241 

combined data distribution.  242 

 243 

Results and discussion 244 

 245 

RT-qPCRs 246 

 247 

The utility of the Harbin application is demonstrated in a comparison of three GLRaV-3 RT-248 

qPCR data sets. The requisite control reactions were included in all data sets, and as expected 249 

no virus CRs were generated for GLRaV-3 negative plant samples. The statistics of the 250 

standard curves generated for each assay per data set can be seen in Table 1. The PCR 251 

efficiencies and linearity calculated from all assays’ standard curves were high and no 252 

evidence of inhibition was seen from the Cq values of the dilution series. These assays 253 
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complied with the Minimum Information for publication of Quantitative real-time PCR 254 

Experiments (MIQE) guidelines to ensure the integrity of the experiments and facilitate 255 

reproducibility (Bustin et al. 2009). 256 

 257 

Monte Carlo simulation study 258 

 259 

The overall performance of the Harbin-test and the Kolmogorov-Smirnov test was assessed 260 

by the percentage of simulation runs for which the null hypothesis was correctly rejected (or 261 

not rejected) for the specific test. The Kolmogorov-Smirnov test had the smaller size (2.4%) 262 

and power (54%), indicating that it is conservative compared to the Harbin-test, failing to 263 

reject an incorrect null hypothesis in a larger proportion of cases. The Harbin-test was found 264 

to be consistently more accurate and powerful than the Kolmogorov-Smirnov test, but had a 265 

higher false positive rate (10.6%). Therefore the Harbin-test offers a good alternative in 266 

situations where the purpose is to avoid considering samples from two different distributions 267 

as originating from populations with the same distribution. The power of both tests increases 268 

with an increase in the size of the sample from the first (“reference data set”) population. For 269 

the smallest sample size considered (n1 = 10), the Harbin test outperformed the Kolmogorov-270 

Smirnov test. This advantage disappeared in the larger sample size scenarios (n1 = 30, 50), 271 

where both tests have nearly equal power.  272 

For populations with the same distribution types (for example, 1a vs. 2a, 1b vs. 2b, etc.), it is 273 

of interest to compare the power of the two tests to detect differences in location and/or scale 274 

only. The Harbin test showed greater power (68.8%) on the simulated data compared to the 275 

Kolmogorov-Smirnov test (56.7%). The Harbin-test was the most powerful in detecting 276 

location shifts. 277 
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One important purpose of the Harbin test is to detect differences in the shapes of two 278 

population distributions, when the locations and scales of the populations are approximately 279 

equal. To assess the performance of the two tests in this regard, the power of the tests for 280 

detecting only differences in distribution types were calculated. The Harbin test is more 281 

powerful (11.4%) than the Kolmogorov-Smirnov test (2.2%) in this regard.  282 

Considering the detection of location and/or scale shifts for two populations with different 283 

distribution types, the Harbin test is also more powerful  (65.4%) than the Kolmogorov-284 

Smirnov test (53.2%). Location shifts, scale shifts and changes in sample size from two 285 

populations with different distribution types showed the same effects on the tests as was 286 

observed overall. 287 

Both the Kolmogorov-Smirnov test and the Harbin-test are able to compare data sets 288 

irrespective of the relationship between the data sets. 289 

 290 

Harbin-test 291 

 292 

When comparing the three qPCR data sets generated from the greenhouse samples, it seemed 293 

possible that the data sets originated from populations which can be described by the same 294 

probability distribution function. The Harbin-test shows that this assumption is likely, as only 295 

6.67 % of the scores assigned to values in the first data set changed when the second data set 296 

was added (p-value = 0.906). Only 13.04 % of scores assigned to values in the newly 297 

combined data set changed with the addition of the third data set (p-value = 0.187). 298 

Therefore, it was concluded that the three data sets are compatible and can be combined for 299 

further analyses. The decision to combine data sets remains the user’s responsibility. It is 300 

important to ensure that all qPCR data were generated using the same protocol and reagents. 301 

Neither the Harbin-test nor the Kolmogorov-Smirnov test takes into account any biological 302 
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factors and therefore careful consideration should be given to the experimental setup before 303 

combining data sets. The combining of data sets is beneficial when sample numbers are large, 304 

experiments need to be extended over a long period of time or when different time points 305 

need to be compared. The cumulative addition of subsequent samples to a reference data set 306 

will ensure an increase in the confidence with which each quantile score represents a true 307 

distribution of CRs unique to the specific quantile.  308 

The distribution of the quantile scores and the change in quantile score distribution with the 309 

addition of data sets can be seen in Fig. 2. The addition of the second data set lowered one 310 

and raised one of the quantile scores of the first data set by one score. With the addition of the 311 

third data set to the combined data of data set 1 and 2, six quantiles scores were raised with 312 

one score of which four were in data set 1 and two in data set 2.  313 

 314 

Conclusions 315 

 316 

Harbin simplifies the analysis of high-density qPCR assays, either for individual experiments 317 

or across sets of replicates and biological conditions. The Harbin-test for the combining of 318 

data sets was shown to be less conservative than the Kolmogorov-Smirnov test, and therefore 319 

more sensitive in detecting distributional differences between data sets. Both tests are able to 320 

compare data sets irrespective of the relationship between the data sets. The quantile-based 321 

scoring system of CRs will allow for comparison of samples between experiments and 322 

different time points, aiding the monitoring of virus titre or gene expression over a season or 323 

longer period of time. The Harbin application and the Harbin-test will ease the data analysis 324 

associated with virus quantitation to monitor disease spread in vineyards. In this study a 325 

quantile score was assigned to each virus concentration ratio of GLRaV-3 single variant 326 

infections in three independent data sets. The addition of more data to the reference database 327 
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will increase the confidence of the quantile boundaries as they will eventually stabilise and 328 

provide a scoring system for virus concentrations. This enables the simplified comparison of 329 

virus concentrations between different variants of GLRaV-3. The addition of mixed variant 330 

infections and more time points to study variation over time will aid the investigation into the 331 

biological characteristics of the different variant groups and their individual contribution to 332 

GLD. It is envisioned that the Harbin-test will also be useful in other genomic applications 333 

where the combining of data sets can be beneficial. The application runs in any web-browser, 334 

and requires no programming experience from the user. This increases the accessibility of the 335 

Harbin quantitation framework for analysis of qPCR data. 336 
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Table 1 RT-qPCR standard curve statistics per data set 387 
 388 

Assay Efficiency r2 Slope y-intercept (b) 

Data set 1         

GLRaV-3 ORF1a 1.02 0.996 -3.286 20.623 

actin 0.99 0.997 -3.349 17.746 

GAPDH 1.01 0.997 -3.305 20.615 

alpha-Tubulin 1.00 0.996 -3.317 20.090 

Data set 2         

GLRaV-3 ORF1a 0.96 0.996 -3.413 27.193 

actin 1.06 0.998 -3.180 25.579 

GAPDH 0.97 0.995 -3.393 24.546 

alpha-Tubulin 0.94 0.995 -3.469 23.998 

Data set 3         

GLRaV-3 ORF1a 0.87 0.993 -3.667 17.29 

actin 0.91 0.991 -3.559 18.309 

GAPDH 0.72 0.99 -4.243 19.503 

alpha-Tubulin 0.92 0.995 -3.524 21.153 

 389 

 390 
 391 
 392 
 393 
  394 
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Fig. 1 Empirical examples of the four distribution types for the first group (1a, 1b, 1c and 1d) 395 

used in the simulation study 396 

 397 

Fig. 2 Concentration ratio (CR) distribution per data set. Dotted lines indicate the quantile 398 

boundaries. The change in distribution and the quantile boundary shifts can be seen in the 399 

combined data sets. 400 
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Fig. 1 420 
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Fig. 2 440 
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