128,083 research outputs found

    Clustering above Exponential Families with Tempered Exponential Measures

    Full text link
    The link with exponential families has allowed kk-means clustering to be generalized to a wide variety of data generating distributions in exponential families and clustering distortions among Bregman divergences. Getting the framework to work above exponential families is important to lift roadblocks like the lack of robustness of some population minimizers carved in their axiomatization. Current generalisations of exponential families like qq-exponential families or even deformed exponential families fail at achieving the goal. In this paper, we provide a new attempt at getting the complete framework, grounded in a new generalisation of exponential families that we introduce, tempered exponential measures (TEM). TEMs keep the maximum entropy axiomatization framework of qq-exponential families, but instead of normalizing the measure, normalize a dual called a co-distribution. Numerous interesting properties arise for clustering such as improved and controllable robustness for population minimizers, that keep a simple analytic form

    Irreducible representations of deformed oscillator algebra and q-special functions

    Full text link
    Different generators of a deformed oscillator algebra give rise to one-parameter families of qq-exponential functions and qq-Hermite polynomials related by generating functions. Connections of the Stieltjes and Hamburger classical moment problems with the corresponding resolution of unity for the qq-coherent states and with 'coordinate' operators - Jacobi matrices, are also pointed out.Comment: Contribution to the workshop IWCQIS-96 (JINR, Dubna

    Unified model for network dynamics exhibiting nonextensive statistics

    Full text link
    We introduce a dynamical network model which unifies a number of network families which are individually known to exhibit qq-exponential degree distributions. The present model dynamics incorporates static (non-growing) self-organizing networks, preferentially growing networks, and (preferentially) rewiring networks. Further, it exhibits a natural random graph limit. The proposed model generalizes network dynamics to rewiring and growth modes which depend on internal topology as well as on a metric imposed by the space they are embedded in. In all of the networks emerging from the presented model we find q-exponential degree distributions over a large parameter space. We comment on the parameter dependence of the corresponding entropic index q for the degree distributions, and on the behavior of the clustering coefficients and neighboring connectivity distributions.Comment: 11 pages 8 fig

    Models of q-algebra representations: Matrix elements of the q-oscillator algebra

    Get PDF
    This article continues a study of function space models of irreducible representations of q analogs of Lie enveloping algebras, motivated by recurrence relations satisfied by q-hypergeometric functions. Here a q analog of the oscillator algebra (not a quantum algebra) is considered. It is shown that various q analogs of the exponential function can be used to mimic the exponential mapping from a Lie algebra to its Lie group and the corresponding matrix elements of the ``group operators'' on these representation spaces are computed. This ``local'' approach applies to more general families of special functions, e.g., with complex arguments and parameters, than does the quantum group approach. It is shown that the matrix elements themselves transform irreducibly under the action of the algebra. q analogs of a formula are found for the product of two hypergeometric functions 1F1 and the product of a 1F1 and a Bessel function. They are interpreted here as expansions of the matrix elements of a ``group operator'' (via the exponential mapping) in a tensor product basis (for the tensor product of two irreducible oscillator algebra representations) in terms of the matrix elements in a reduced basis. As a by-product of this analysis an interesting new orthonormal basis was found for a q analog of the Bargmann–Segal Hilbert space of entire functions
    • 

    corecore