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This article continues a study of function space models of irreducible represen- 
tations of q analogs of Lie enveloping algebras, motivated by recurrence relations 
satisfied by q-hypergeometric functions. Here a q analog of the oscillator algebra 
(not a quantum algebra) is considered. It is shown that various q analogs of the 
exponential function can be used to mimic the exponential mapping from a Lie 
algebra to its Lie group and the corresponding matrix elements of the “group 
operators” on these representation spaces are computed. This “local” approach 
applies to more general families of special functions, e.g., with complex argu- 
ments and parameters, than does the quantum group approach. It is shown that 
the matrix elements themselves transform irreducibly under the action of the 
algebra. q analogs of a formula are found for the product of two hypergeometric 
functions ,F1 and the product of a ,F1 and a Bessel function. They are 
interpreted here as expansions of the matrix elements of a “group operator” 
(via the exponential mapping) in a tensor product basis (for the tensor product 
of two irreducible oscillator algebra representations) in terms of the matrix 
elements in a reduced basis. As a by-product of this analysis an interesting new 
orthonormal basis was found for a q analog of the Bargmann-Segal Hilbert 
space of entire functions. 

I. INTRODUCTION 

This article continues the study of function space models of irreducible representations of 
q algebras. l-3 These algebras and models are motivated by recurrence relations satisfied by 
q-hypergeometric functions4 and our treatment is an alternative to the theory of quantum 
groups. Here, we consider the irreducible representations of a q analog of the oscillator algebra 
(not a quantum algebra). We replace the usual exponential function mapping from the Lie 
algebra to the Lie group by the q-exponential mappings E4 and e4. In place of the usual matrix 
elements on the group (arising from an irreducible representation) which are expressible in 
terms of Laguerre polynomials and functions, we tind seven types of matrix elements express- 
ible in terms of q-hypergeometric series. These q-matrix elements do not satisfy group homo- 
morphism properties, so they do not lead to addition theorems in the usual sense. However, 
they do satisfy orthogonality relations. Furthermore, in analogy with true group representation 
theory we can show that each of the seven families of matrix elements determines a two- 
variable model for irreducible representations of the q-oscillator algebra. In Sec. III we show 
how this two-variable model leads to orthogonality relations for the matrix elements. 

In Sec. IV we tind a q analog of a formula for the product of two hypergeometric functions 
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,F, . This is interpreted here as an expansion of the matrix elements of a “group operator” (via 
the exponential mapping) in a tensor product basis (for the tensor product of two irreducible 
oscillator algebra representations) in terms of the matrix elements in a reduced basis. In Sec. 
V we find a q analog of a formula for the product of a ,F1 and a Bessel function. This is 
interpreted here as an expansion of the matrix elements of the “group operator” in a tensor 
product basis (for the tensor product of an irreducible oscillator algebra representation and an 
irreducible representation of the quantum motion group) in terms of the matrix elements in a 
reduced basis. As a by-product of this analysis we find an interesting new orthonormal basis for 
a q analog of the Bargmann-Segal Hilbert space of entire functions. 

Our approach to the derivation and understanding of q-series identities is based on the 
study of q algebras as q analogs of Lie algebras.5P6 We are attempting to End q analogs of the 
theory relating Lie algebra and local Lie transformation grou~s.“~ A similar approach has been 
adopted by Floreanini and Vinet.%12 This is an alternative to the elegant articles’3-2’ which are 
based primarily on the theory of quantum groups. The main justification of the “local” ap- 
proach is that it is more general; it applies to more general families of special functions than 
does the quantum group approach. 

The notation used for the q series in this article follows that of Gasper and Rahman.” 

II. MODELS OF OSCILLATOR ALGEBRA REPRESENTATIONS 

In Ref. 1 a q analog of the oscillator algebra was introduced. This is the associative algebra 
generated by the four elements H, E, , E- , %’ that obey the commutation relations 

[H,E+]=E+, [H,E-1=-E-, 
(2.1) 

[E, ,E-] = -q-%, [ 8, E,] = [ 8, H] =O. 

It admits a class of algebraically irreducible representations t /,A where /,;l are complex num- 
bers and e#O. These are defined on a vector space with basis (e,:n=0,1,2,...,}, such that 

(2.2) 

He,= (A+n)e,, @?en=d”&-‘en. 

If il and 8 are real with /> 0 (as we will assume in this article) then t F,,n is defined on the 
Hilbert space K0 with orthonormal basis {e,} and on this space we have E, = (E- ) *, H* = H, 
and %‘* = Z9. A second convenient basis for K,-, is Cr;, :n =0, l,...,} where 

(2.3) 
Hf,=(A+n)f,, gf,,=t2&‘fn. 

Here, f,, = ,/(q;q),J(l-q)“e,. The elements %‘=qq-HFY++q-l)E+E- and FZ lie in the 
center of this algebra, and corresponding to the irreducible representation t /,a we have 
f?? = / “1, ZF = / ‘#- ‘I where I is the identity operator on K,, . 

A convenient one-variable model of te,a is given by the basis functions cf,(z) =z”: 
n=0,1,2,...,) in the complex variable z where the action of the oscillator algebra is 

I 
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E, =$ T,- I”, 
e 

E-=(ldq)z ~ (,;I”- Tin), 

H=A+z;, 8=e2&-lI 

and 7’3%) =f(qad. 
The inner product on K0 is 

(f&=zt, s,‘” sd’-“-’ f(re’e)gO(q(l-q)~;qIW Q2& 

s k I;(r*)c+*=k(l-q) i J’W’M’~ 
0 n=O 

The functions 

(1-q)” 
e = (4.4)9, n=O,l,..., n i 2 n 

form an orthonormal basis for the Hilbert space K. of all functions 

f(z)= n~ocnp 

such that 

5 lcn12 

n=O (l-q)“< w* 

These functions are analytic in the disk IzI < (1 -q) -In. 
A second model of T/J, ’ is determined by the orthonormal basis functions 

en=qn(n+1V4 (1-q)” 

I- 
-z”, n=O,l,..., 

(%Q)n 

and the operators 

e 
E+=&I, E-=--(l-qjz (l--T,-‘), 

H=A+z$, %=&2&V. 

The inner product is 

(fg) = J Jm f (dg(z)pkw~ 44 --m 

where z=x+iy and 

5335 

(2.4) 

(2.5) 
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p(sZ) = 
1-q 

(- (1 -q)ZZ7,q)mv In q-’ ’ 

The model Hilbert space K,(z) consists of all functions 

f’(Z)= nzocny 

such that 

2 ICnlZq-n(n+l)n< w 

n=O (1-q)” * 

This is a space of entire functions; it has the kernel function 

S(zl,z) = i eA(z))eA(z) =(- (1 -q)qz’z;q), . 
n=O 

Using the relations (2.3) and the q-exponentials 

* 2 
eJz)= kzo mk=&. for IzI Cl, 

, 2 m 

00 fl(k-I)/2 

Eq(z) = k;. (4’q)k 2= (--zx) m  
, 

we can define seven q analogs of the matrix elements of T/J 

(e+,e-): e,(flE+)e,(aE-)f,= z T$~“-‘(aJ?)fnf~ 

(e+,E- 1: e,(fiE+)E,(aE-)fn= c T2i’E-)(a*fl)fn’9 
n’ 

(e-J+ 1: e,(pE-)Eq(aE+)fn= ? Tz,‘E+)(a8)fnp, 

(E+,e-): E,@E+)e,(aE-)f,= 5 TFZ’e-‘(a~fi)fnl~ 

(E-,e+): E,(fiE-)e,(aE+)f,= ; Tj;;E,-‘“+)(a8)fn’~ 

(E+,E-): E,@E+)E,(aE-)f,= $ TFi’E-)(akj)fnlp 

(E-,E+): E&lE-)EJaE+)f,= $ T~n,‘E+)(aJ3fn~. 

[The series for the matrix elements T$,‘e+)(a,/3) does not converge.] 
Since P+ = E- the following relationships hold: 

(2.6) 

(2.7) 

(2.8) 
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T(e+~e-)(a,f&$,,,= T$‘(B,iE), n’n 

T’E+~E-‘(aS)An,n=T~~‘E-)(8,13), T~n-sE+)(a,/3)A,r,=T~,-‘E+)Z). n’n 

Here 

A&f-$ (1 -q)“-“‘. 
; n 

Since e4(z)E,J -z) = 1, we have the identities 

(a) : T~,+“-‘(a,B)T~~-‘E+‘( -&-a) =a,,,, 

(b) 5 T~~“+‘(a,B)T~~+‘+“-)(-8,-a)=6,,,. 

(2.10) 

Using the model (2.4) to compute the matrix elements (which are model independent) we 
obtain the explicit results 

T”+“-‘(a$?) = (4”‘~“+‘;q) m (pe>“‘-” 
--n 

n’n (WI) 00 
q(n--n’)(n+n’+lv4 

4 9 
2h 

0 -aflt2 
&n+l - ;q, 1-q 

=(@- “‘+‘;q) m (fl’+‘;q) m (aOnmn’ 
(q;q),(q”+l;q)m(l-q)“-“’ 

qw--nNn’+n+l)/42~* 

( 

--n' Q 9 0 -af3L2 
X n--n’+1 MP lmq 

1 
9 

Q 

TfE+'e-)( a,B) = n'n 
(4'+1;4)m(qn-n'+1;q)m(ae)n-R' q(n,-n)(n,+n+1),4 

(4;4),(q"+1;4),(1-q)n-n' 
161 

= w’-“+‘;q> m WY-” 4 --?I aljif2qn’--n 
(WI) m 

q(n’-n)(n’-3n-3)/41~l q”‘-“+1F7Y lvq 3 

(2.11) 

Tr,‘E-l(a,fl) = 
(&n+l;q) m (pey’-n 4 --n 

- a@q”’ - ” 
(WI) m 

qw-n)(n’-3n-3)/41~2 

(I d--n+1 , 07z9 
1-q 

y- n’+l;q)m(qn’+l;q)m(af)“-“’ 

(4;q)m(bf+1;4)oo(l-q)“-“’ 

q(n--n’)(n-3n’-3)/41~2 

( 
4 -d -a@@-" 

X @- n’+l , o;q' 
1 l-q ’ 
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TcE-IE+ ) ( a#) = ((--@P/C 1 -q)q);q) m (4”‘~n+*;q) m (aeY’-n 
n’n (w7) m 

Xq(n’--n)(n’-3n-3)/4 
26 

( 

--n 
4 9 0 --afP2 

qn’-n+l - ;qp (1-q)q 1 

--n’ 
Xqwt’)(n-3n’-3)/4 

26 
( 

Q 9 0 -afle2 

4 
n--n’+ 1 ;qy (1-q)q * ) 

‘l-&e mate elements T(e+,e-),T(E+,e-),T(E+,E-) are polynomials in a and P and the 
matrix elements T(“-I”+) are entire analytic functions of these variables. We will see that the 
remaining matrix elements can be expressed in terms of these four. 

Each of these families of matrix elements determines models of the irreducible represen- 
tations t /,A. This is a consequence of the commutation relations (2.1). To see this we make use 
of the following formal power series results for linear operators X, Y: 

Lemma 1: 

E,(f-WYe,(---crX) = nio & [X~Yl,9 n 

where 

1x3 Ylo= K 1x9 Yl n+‘=X[X, Y]&“-[X, Y],X, n=O,l,... . 

Lemma 2: 

where 

[X, q=y, LX, y1;+, =X[X, Y];-qyx, Y]iX, n=O,l,... - 

Let X and Y be linear operators such that YX=qXY. A straightforward formal induction 
argument using this property15 (Ref. 22, page 28) yields 

Lemma 3: 

(Y+Jw= i. (q;q;;;;;;)*-pX+Y 

e,W+ Y) =e,GW$ Y>, E&Y+ Y) =E,( YWJX). 

As a consequence of Lemmas 1 and 2 we have 
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(a) E&aE-)E+e,( -aE-1 =E+ +& qeHfAp 

8e2 (b) e,(BE+)E_E,(-BE+)=E---(l--q)qq-R+~. 

(2.12) 

Note also the easily verified identities 

Eq( --BE+)q-He,UW+) =q-“, 

E& -j?qE- )q-%,(BE- 1 =qmH. 

Iterating ~q. (2.12a) and using Lemma 3 we obtain the operator identity 

aBe2q-H+A-’ % 1-q e,(BE+)E,(aE-)=Eq(aE-)eq(BE+) 

and Eq. (2.12b) yields 

Eq(BE+)eq(aE-)eq ape2q-H+AZ-’ 
1-q 

=e,( aE- )E,(BE+ )* 

Note that Eqs. (2.14) and (2.15) imply the relations 

T’E-“+)(/3,a) =eq n’n ( a’2zm’) T~~‘E-)(a,fl), 

T$isE+)(fi,a) =e q( “:““-‘) T~f~‘“-‘(a,fi). 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

Thus the matrix elements TF[“+’ are well-defined for Iaj?/2q-“‘-1/(1-q)I <l and the 
matrix elements T$isE+) are well-defined for 1 aj3/2q--n-*/( 1 -q) 1 < 1. 

Considering the matrix elements (e + ,e - ) , we see that the operator identities 

(a) e,(BE+ )e,(aE- )E- =i (I- T,)e,(BE+ )e,(aE- )s 

(b) e,(flE+ )e,(aE- )E+ =i (I- T&,(BE+ )e,(aE-) 

a/' 
+ (1 -q)q w~'q- H+Aeq(BE+ )e,(aE- 1, (2.17) 

cc) [H, eq(flE+)eq(aE-)]=(@p-aa~)eq(flE+)eq(aE-) 

imply 

14 (4 ecnI--q T$:f;)(a,j?) =$ (I-TT,)T$~‘e-)(a,/3), 
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(b) eq-(n+*)‘2T~:lte;)(a,~) = 
(2.18) 

(c) (t~--n’)T$,+‘~-) (a,B)=(aa,-Ba,)T~,f~“-‘(a,B>, 

where TJ(a,B) =f(qa$). Thus the following set of operators and basis functions defines a 
realization of the representation t e, _ ., , ( k3’ = e ‘q- “’ - ‘I) : 

aP 
(e+,e-): E+=.$+p 

(1--4)qQ 
-“‘TBT,‘, 

-a E -, 5, f --np+n= T$,f’e-)(a,P), 
(2.19) 

where 

gx=i (I-TJ, ++=z (T;‘-I), ii=aa,-pa,. (2.20) 

Due to the invariant operator Ce = e21=q- ‘+‘%+(q-l)E+k?, wecan writeE+ inditfer- 
ent ways. Indeed, eliminating k B from E, and (a/q( l-q)) T; ’ 5% we can write the raising 
operator in the simpler form 

E;= 

For the matrix elements (e+,E- ) the operator identities 

(a) e,(flE+)E,(crE-)E-=z (T;‘-I)eq(flE+)Eq(aE-)~ 

(2.21) 

(b) eq(PE+)Eq(aE-)E+=$ (I-TB)eq(flE+)Eq(aE-) 

d2 
+(1-&J TBq- 

H+Aeq(BE+ )E,(aE-) 

and Eq. (2.17~) imply 

1-Q 
(4 eq--n/2 l-q - T$zfr’(a,/3) =z ( T;l-I)T$~‘E-)(a,j?), 

(b) eq-(“+*)‘2T~~~l--)(a,s) = (2.22) 

(c) (n-nn’)T$,+‘E-) (a,B) = (aa,-Ba~)T~,f.E-)(a,/3). 

For the matrix elements (E+,E-) we have 
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l--q” 
(a> ec” l-q - T~~:~-‘(a,fl)=~ (T;l-I)T~~‘E-‘(a,fl), 

\ 

(a,B), 
(2.23) 

(cl (n-n’) Tnt,, (E+‘E-)(a,fi) = (a&-/3aB) T~~‘E-)(a,/3), 

whereas for the matrix elements (E+ ,e - ) we have 

l--q” (Effz-) (4 4-n I--q T,r,,-l (a,!?) =d (I- T,) T~~‘“-‘(a,B), 

(b) eq-(~+l)“T~~~,-)(a,B) = 
(2.24) 

(cl (n--n’)&, (E+se-) (a&l) = (ad, -pap) Trl@-) (a,f3). 

Due to the invariant operator $5 = e21 we can write the raising operator E, =k B 
+(a/ 2q-“‘/( 1 -q)q)TpTal in the alternate form 

For the matrix elements (e - ,E+ ) we have 

l--q” (a) /q-“/2 I--q T$,fT)(a,B) = 
a Pq-” 

i (I-TTg) -(l--q)q TF’T, 

(b) d’q-(n+*)/ZT$;f~‘(a,/3) =$ ( T;‘-I)T(e-‘E+)(a,/3), n’n a (2.25) 

(cl (n-n’) T,,, (e ‘E+)(a,j3) = (Ba,-aa,>T~,‘E+)(a,B). 

Due to the invariant operator %  = e21 we can write the lowering operator E- =E ~9 
-(apq-“‘/( 1 -q)q)Ti’Ta in the alternate form 

E:=(j$+%)Ta. 

For matrix elements (E- ,e + ) we have 

l-f (E--,e+) (a) fquKfi l--q T,,,,-1 (a,B) = 
aPq+’ 

i (T~‘-I) -(l--q)q Ti’ 

(b) eq-(“+1)‘2T~~~~)(a,B) =’ (I-TT,)T(E-‘e+)(a,fl), n’n a (2.26) 
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(cl (n-UT,,, cE-‘ef)(a,fl) = (j3aD-aa,) T~nW’e+‘(a,/3). 

Finally, for the matrix ‘elements (E--E+ ) we have 

ae2q-n’ 
$ (T~l-O-(l-q)q (a,Bh 

(b) eq-(“+‘)/2T~~~~)(a,B)=4 (T-l-I)T’E-‘E+)(a,fl) 
a a n’n , (2.27) 

(cl (n--n’)T,,,, (E-‘E+)(a,f?) = (pa,-aa,) T~n7E+)(a,j?>, 

where the lowering operator E-=E@-(ae’q-“‘/( 1 -q)q)TF’T, can be expressed in the 
alternate form 

E’=(j$+$)T,. 

These relations are equivalent to q-difference relations satisfied by various 
q-hypergeometric series. Furthermore, it is easy to verify from the series that the relations hold 
also for e and n’ complex. Thus we have a wide variety of two-variable models of algebraically 
irreducible representations of the q-oscillator algebra. We note that this approach is closely 
related to the factorization method of quantum mechanics.23 

For later use, we also consider a class of algebraically irreducible representations R ( &,A) 
such that the spectrum of H is bounded neither above nor below. Here, e, 6, J, are real numbers 
and e,S > 0. A convenient basis for the representation space K1 is {f, :n=O, f 1, f 2,...,) where 

E+fn=efn+l, E-f,=/ q$=fn-‘, 

Hf,,=(A+n)f,,, gfn= -6?-‘af,,. 

There is an inner product on K1 with respect to which the f, forms an orthogonal basis and 
E+=(E-)*, H*=H, and 8*=%‘:. We can require that Ilf,l12=(-sq-“;q),/(1-q)n. The 
central element 5.% =qqeHg + (q- 1 E+E- corresponding to this irreducible representation is ) 
55’ = - 8 2I where I is the identity operator on K1. 

One of the families of matrix elements of R (&&I) is 

Explicitly 

f’E+qa,p) = (-4”‘+*/S;q),(~-“‘+*;q),(ae~/q)“-”’ 
n’n 

(4;4)m(-q4n+1/6;q),(1-q)n-n’ 

q(“‘-“w+“-l)/21~* 

( 
--sq-“’ ai@ 

X 
Q- - 

n*+*;q*- 1 -q 
) 
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= w’-n+l;q) m <so*‘-n q(“‘-“)(n’-n-l)/2 1#1 

( 

-6q-” ape2g’ --n 

(4;4) co q”‘-“+1x*- lsq 
1 

* 

(2.29) 

With respect to the orthonormal basis {e,= f,/jl f ./I) th e matrix elements of the operator 
E,(BE+)e,(aE-1 me 

g(E++--)(a,p) = ( -g’++//gqq &Y--n (4”~n’+l 
;d m bOd”-“’ 

n’n \ (-4”+%;d m 
(l-q)“-“’ 

(4x) 00 

Xqw-nNn’+n-3v41~l 

( 

-)jq-“) afV2 

4 
n-n~+‘;4qq * 

1 
(2.30) 

III. ORTHOGONALITY RELATIONS FOR MATRIX ELEMENTS 

Identities (2.10) yield orthogonality and biorthogonality relations for q-hypergeometric 
functions. For example, IQ. (2.10a) can be written in the form 

= z”(q;q)nq-n(“+‘) s 
Wwz) m n’n, lzhf+‘I < 1. (3.1) 

py its derivation, identity (2.10a) is valid as a formal power series in the variables a, 8. Using 
the ratio test to determine the domain of convergence corresponding to te,n we find that the 
series (3.1) converges for lz/@+‘j < 1.1 

Equation (2. lob) can be written as 

h=O (wz)h-n’(W)h--n 

= ( -z)“(q;q),(zq-a-1;q) ooq--3n(n+‘w3,‘n (3.2) 

convergent for all z. 
A nontrivial extension of identity (2. lob) is 

where the matrix elements S,#,(r,/3> are defined by 

Explicitly 
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I 
( -m”-“‘wn;qLP qhml+n+n’)/4 -r . 

Ll(Y>B) = (1 -q)“-n’(q;q)n-n, ( ) 
B ,4 n--n,9 if n>n’ 

10, if n<n’. 

In the special case y/p= -q n’--n+yn--n’l where k[n] E { 1,2,...,n) for n > 0 and k[n] is arbitrary 
for n<O we find the result 

O ” (W)h( --zq c  
--n+k[n---n’] )h#(h--3)/Z 

h=O (%q)h-nt(%q)h-n 

=( -z)“(q;q),(z;q),q-“(“+‘)“6,,, 

convergent for all z. (In the case of the Lie algebra of the Euclidean group in the plane, the 
analogous identities are the Hansen-Lommel identities for q-Bessel functions.24’13*2 There is a 
similar extension of (2. lOa). 

In Ref. 1 orthogonality relations for the matrix elements TCE+@) and T(e+‘e-) are de- 
rived, analogous to the Peter-Weyl-type orthogonality relations for the oscillator group. 

IV. A TENSOR PRODUCT IDENTITY 

G iven the irreducible representations t/if, and te,,n, on the Hilbert space K. we define the 
tensor product representation te, J, 8 t e,,h on the space K. 8 K. by the operators’ 

F+=A(F+)=F, ~q”“)H+q-(l/z)H~E+, 

L=A(H)=HeI+IeH, 

where 

Then we have 

[LF,l=M,, [F,, F-I=-Sq-$ 

[9-t F,] = [S+-, L] =O. 

(4.1) 

(4.2) 

(4.3) 

We introduce an inner product ( - , * ) on K. o K. such that 

(- (Kl/Kz)&+l;q). 
’ (l--d”+’ ’ ($q)h(q;q)jd. 

Then we have 

(4.4) 
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for all pl,p2~Koe K. that are a finite linear combination of the basis vectors f(h(l’L1) 
@  ,(~2*~2) 

i ’ 
In Ref. 1 the representation ?e, &l 8 te,,~, was decomposed into irreducible components, 

through use of the model (2.4). The result is as follows. 
Theorem 1: 

m 
fe,,n, @ fe,,p szo @ Q1+A2+s* 

For ks=0,1,2 ,..., there ti an orthogonal basis u4k3 for K,@ K,, transforming according to 

F+fs;k=~q-(k+1)‘2fs,k+l, 

F-fs,k=x q-k’2 l--q l-qkfsk-l. , (4.5) 

Lf,k= (h+~ZZ+S+k)fs,k, 

where 

Furthermore 

z= Jq-“(L:q++L;q+). 

(fs,k,fs’,k’) =‘%.dkkt 
(q;q)sh!)k 

(1 -q)“+ 
k 

(- (Kl/Kz) sz+ ‘YA * 

Expanding the orthonormal basis {43 for K. 8 K. 

es,=/fs,kll-‘fs,k, &k=0,1,2,... 

in terms of the orthonormal basis 

,c4 Al) @  e 

“1 
~~2~~2~~f~~ll~l~~e~~21~2~,~~f~~l~l~ @ey2?A2’11 

“2 

we obtain the Clebsch-Gordon coefficients 

1 

~174; ez,n,; s 
+ C nl; n2; (4.6) 

“1 In2 

k e~flJ1)c3e~~‘A2).e 1 Q 
These coefficients vanish unless nl +n2=s+ k. Furthermore, they satisfy the identities 

=I 

e1,4; e,,n,; s 

“1 l”2 nl; n2; II /IA; ~2J2; s’ 

k q nl; 1 n2; k’ q 
=&I, 

ed,; e2,n2; s 

Z[ s,k nl; n2; k Ii ed,; e2,a2; s 

k 4 4; 4; 1 =hzp; 9 
4 

(4.7) 

wherenl+n2=n~+n~=s+k=s’+k’andweareassumingthat~l,~2>Oandill,il2are 
real. Explicitly, we have 
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nl; n2; 1 ,-~k(q(~2/2)-(s/2)e~)k 
(A1/2)+(A2/2)+s+k[l 

k ’ K2e2 4 

x W;q) 
(- (KdKd4 k2+1;4)s(Q;4)nlK; 

“’ (- (Kd’d4 ~2+1;q)n2(q;q),(q;q>,(4;4)k 

4 --n2, -k 

x 342 q ’ 

4 90 
l--n2+s 

l/2 

(4.8) 

where we have corrected some typographical errors in the corresponding expression (5.11) 
derived in Ref. 1. The coefficients can be written in the alternate form 

e,,a,; e,,n,; s 

4; n2; k 
=~~-k(q(“2/2)-(~/Z)el)k -d’i’2);(~)-1el 

*2 

1 2 
P 

I 
(- (Klh)4 

X 
4+*;q),(- (K1/K2)~+1;4),(4;q)~lK~ “’ 

h?)n,(~;ds(~;dk 1 

4 - “2, Kl l+lz+s -- 

x241 
K2 

4 

(4.9) 
K’ ql +A, -- 
K2 

We will compute the matrix elements of the operator eq(/3F+)Eq(aF-) with respect to 
both the tensor product basis ezl “l) 8 eie2’A2) se,,, 8 e, and the reduced basis tib 

From Lemma 3 we have the formal identity 

eq(~F+)Eq(~F-)=eq(~q-(1’2’H@E+)eq(~E+ ~q’1’2’H)E~~q-‘1’2’H~E-(Klbi+K2)) 

x E,( aE- o q’1’2’H) 

Xe,(f?E+ o q(1’2)H)Eq(aE- 8 q’1’2’H). 

The matrix elements with respect to the tensor product basis are given by 

=(eq(BF+)Eq(crF-)fm~fn,fml~fn)) 

=(eq(~q-(“2)H~E+)E~aq-(‘“)H BE-(K#-/-Kz)) 

Xe,(PE+ eq1’2H)Eq(aE- eq’1’2’H)f,~fn,fm’Ofn’) 
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= (e,W+ QP q ‘A2+n)/2)Eq(aE_~q(a2+n)‘2)fm~fn, 

E&Zq- (Ll+m’)‘2 @ (K1~+K2)E+)eq(&-(a1+m’)‘2 8 E-1 f,, 0 f,,) 

=(eq(8q(A2+“)/2E+)Eq(aq(~2+R)/ZE_)fm,fm,) 

x (eq(~q-(L~+m’)‘2E+)E,(aq- “1fm”‘2E-(Klbi+K2))f,,fn)>. (4.10) 

Thus, the matrix elements factor. Explicitly, we have 

s:;;;;’ (c&B) = (q;q)m(q;Q)n(- (Kl/K& A2+1;q)n(l -dm’+n’-m-n 1’2 
K;I’-n(q;Q)m,(q;q)n~(- (KdK2)++‘;& 1 

x (ael)m-m’(aK2e2)n-n’(- (K1/K2)q r12+*;q)q(m-m’)(m-3m’+2n+WZ-3)/4 

(~;~)n~n,(~;Q)m~m,(-(K,/K~)~+1;~)n,~~n’-n~~”-3”‘-2m’-U1-3~’4 

ffse ;4” 
-m’+n+AZ 

x lh 
1-q 

K2 -A2-#p 

x241 
4 

-n’ 
9 -;4 &?e ;Klq L2+” 

cf- 
n’+l ;q~-(l-q)q”l+m’ 

(4.11) 

The matrix elements in the reduced basis are 

k’-k 

I 

1’2 (z a)k-k’ 

k&q) k-k8 

q(k-k’)(k-3k’-3)/4 

Q -k’ 

x VP1 k-kt+l% (4.12) 
4 

We note from Eqs. (4.6), (4.10), and (4.12) that the following identity, relating the two 
classes of matrix elements must hold: 

s~;;;;‘(cr,p)= c [ ef’i e2;; s , , s ] s:.?$-lym+,-,w m+n-s q 

1 

e,,h e2,,n2; s 
X m’; n’; 1 m’+n’-s ’ q 

This leads to the identity 

d”‘bzq).~(dq;q), 

(c&;q) m (q;q)rn~(WX)n~ 
1#1 ( q;;;q,zd) 2#1 ( q-n”w;q’-n’;q,zq-‘-m’) 
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m’+n’ 

= z. (q;y;;;y~,y;,_, h( Q’;;;n’Y?. “,J 
, s ; 

x241 c 

-1 -dwq s 

q w ;wW’ ‘+n’--s+ 1 ;q,p’fn’-s+l (4.13) 

The result (4.13) is established, initially, only for c=q’, d=f where p, t are non-negative 
integers. However, a standard analytic continuation argument extends it to all complex values 
ofz,w,c,dsuchthat Icdql<l. 

V. A SECOND TENSOR PRODUCT IDENTITY 

The q-oscillator algebra, modulo the ideal generated by 8, is isomorphic to the enveloping 
algebra of the Lie algebra m(2) of the Euclidean motion group in the plane.58~“‘13 Thus the 
irreducible representations of m (2) induce irreducible representations of the q-oscillator alge- 
bra. We focus our attention on the induced representation (o),o > 0. The spectrum of the 
operator H corresponding to (0) is the set Z= (0, * 1, f 2,...,) and the complex representation 
space K2 has basis vectors pm, m EZ, such that 

E+Pm=aPrnalv Hpm=mpm, ~Pm=O- (5.1) 

There is an inner product on K2 such that (pm,pm,) =S mmr,m,m’EZ. On the dense subspace X 
of all finite linear combinations of the basis vectors we have 

(E+fJ-‘> = (f,E-f’), (HfJ-7 = (f,Hf’> 

forall f,f’&T,soH=H*andE*+ = E-. 
A simple realization of (0) is given by the operators 

(5.2) 

d 
H=Q--, E+=cou, E-=;, zf=o 

acting on the space of all linear combinations of the functions urn, u is a complex variable, 
m EZ, with basis vectors p,(u) = urn. 

Consider the following q analog of matrix elements of (a):’ 

E,@IE+)e,(aE-)p,= $ T~~‘(ff,fl)P*~~ 144 <IQ np=-@J 
Explicitly we have 

Tf$-f)(a,B) = w’-“+‘Au-w”‘-” qw-“)w-“-l)/21~l 

( 

0 
(48) m 

qn’_,+l;q,-agW2q”‘-” 
) 

=(4”- “‘f’;q) m (czw)“-“’ 0 
(w) co 191 

( 4”- 
n~+l;4,-aaSw2 . 

1 
(5.4) 

If c@ # 0 we can express these elements in terms of the Hahn-Exton q-Bessel function17 

.JJzx)=(~~~;~~ z~l$h,(qe,l;q,qz$ 
; m 

(5.5) 
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Indeed, setting a = ire*, /3= ire-““, we see that in terms of the new complex coordinates 
[r, e@ ] we have 

T2na[r, eW] =,i[(lm)+Wn-n’) 
4 

(“--n’)/2Jn-n,(r0q-1/2;q)* (5.6) 

[Note that J-,(z;q) = ( - 1)“q”/2J,(zqnn;q), for integer n.] 
We define the tensor product representation (w) 8 te,n, acting on the space. K2 0 Ko, by 

F+=A(E+) =E, @q’1/2’H+q-(1/2)HBE+, 

(5.7) 
L=A(H)=HeI+IeH, 

F=A($)=le$. 

By construction 

[L,f’,l=M,, [F,, F-I=--Yq-t 

[F,F,]=[F, L]=O. 
(5.8) 

Note also that with respect to the induced inner product we have F, = P! , L= L*, 9=Sr* 
on the dense subspace of all finite linear combinations of the basis vectors pm 8 f n. 

We will decompose (w) 8 t/,ll into a direct sum of irreducible representations of the 
q-oscillator algebra. To carry out the decomposition explicitly it is very useful to employ a 
function space realization of the tensor product representation. Using the models (2.5) and 
(5.3) we tind 

e F, =q i/2,UT;n+/‘J,1’2, F-=q”2m T;“-- 
U (I-q)z 

T,“‘(I- 2-T’) , 

L=ud,+za,+~, 3=Pq-v 

For the decomposition we first determine a basis for K2 OII K. that consists of simultaneous 
eigenvectors of the commuting operators L and 

% =qq-=F+ (q- l)F+F- . (5.9) 

Introducing new variables u and r=z/u in place of II, z we see that the functions 
{ J~ucfb”(“+ 1)‘4r a = &e,(r):n = 0,1,2 ,... ;g = 0, f 1, f 2 ,...,I form an ortho- 
normal basis for K2 8 Ko. Clearly, the possible eigenvalues of L on the space are {{+kc=O, 
f 1, f 2,...,) and the eigenspace Y6 corresponding to eigenvalue {+A consists of the functions 
js such that 

j,(u,z)=u~h(r)=u~ 5 
n=O w,(r), n.. Ic,12< W. 

Furthermore K2 o Ko=X& _ m EI Ys. The restriction of %’ to Y, takes the form %‘j,(u,z) 
=&S’@(r) where j,= &h(r) and 
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x (T,--I) h(r). 1 (5.10) 

The symmetric operator Ce,Xc(r) +Ka(r) is bounded and its closure is self-adjoint; fur- 
ther it belongs to the Hilbert-Schmidt clas~.~~ To see this we use Eq. (5.10) to determine the 
action of %’ 5 on the orthonormal basis {e,(r) } 

%gn= - J( 1 -q) (1 -b’+*)q(~-5+n)‘2,een+,+(q-Se2 

-(l-q)#w2)q”e,- 6(1-q)(1-bc)q(~-5+n-1)‘2wee,_l. (5.11) 

We see from this result that 

n~o(~~e.,e.)= 1--q2 
q-2v4+ ( 1 -q)2q%d4< or) , (5.12) 

which implies that the closure of the domain of the operator defined by Eq. (5.11) is 9, and 
that this bounded self-adjoint operator Ces is Hilbert-Schmidt. 

The eigenvalue equation % g h(r) = ch (r) can, from Eq. ( 5. lo), be expressed in the form 

(1 +q(-A+‘+%r/aIL) 
TJl(r) =(l+ (q- l)q(~+‘+~)4dr)( 1 +q(-~+‘-~~~2r~/~) h(r)9 

with solution 

hc(r)=((1-q)q(“+L+P)‘2,/~;q),( -q(-~2+‘-~~‘W/o;q), 
s ( -q(-A+‘+5)%/d;q) m (5.13) 

unique up to a multiplicative constant. Note that the functions f g(u,z) =&h’$r) satisfy the 
relations 

F+f :=qA’2af ;+I, 
P 

F-f ;=q-c-n/2 (l-q)w 

Lf ;=(GCIf ;, 9f p&-‘/“f ;, 
(5.14) 

It remains to determine for which values of c the functions hi(r) belong to the Hilbert 
space K,,(r). Since the elements of Ke( F-) are entire functions, there are only three possibilities 

case 1: c=q -“e2, &l~Z 5=6ob,~o + l&0+2,..., 

case 2: c= - ( 1-q)qA+‘w2, CEZ, s-0,1,2 ,..., 

case 3: c=O. 

In case 1 we have basis eigenvectors (m =g-to) 

f~“‘(u,z) =(( 1 -q)q (A+50+m+l)+w/e;q),( _q(-A-~0-m+1)/2~e/~;q)m1150+m, 

(5.15) 
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c=q-W2, m=0,1,2 ,... . 

A direct computation for m=O gives 11 f~co’j12 = ( - ( 1 - q)q ‘+%02/d’2;q), . Then from the 
recurrence relations (5.14) and the fact that F, = F*- we find 

llf;~y=( ~~~~q~~1))mq-“‘“-“n(p;q)m~-(l-q)q”tioo2,~;q), . 

In case 2 the eigenvectors are (it =EJ 

f[“l(u,z)=( -q’-A-“+“‘w/w;q),(( l-q)q(~+“+l)“rw/~;q)~u”, n 

c=-(l-q)qL+@, n=0,*1,*2 ,..., 
(5.16) 

and the normalization is 

llf1;(1~~2=(q;q)sq-s 
( 

-(l-qh++“+l$q) (-q-A-n (/;)J;q) * 
s m 

Case 3 does not occur because hg does not belong to the Hilbert space Ko( r). To see this, 
we expand ht in terms of the orthonormal basis: hi= Z;=, amem. From Eq. (5.11) and the 
defining equation %‘C hF=O we obtain the recurrence relation 

(q-V- (1 -q)qv)q%,- J( 1 -q) (1 -qm+‘)q(~-5+m)‘2,~,m+l 

- I/( 1 -q) (1 -qm)q(~-f+m-1)/2W~~m-1=0 (5.17) 

for m)l and 

w@--u--q) q %+zo- (1 -q)q(L-~)‘2,L%l=o. 

We require that a0 # 0 is real, so that all a, arc real. Setting pm=um+ l/am we see from Eq. 
(5.17) that 

yq(m+ 1)/2 Pm 
Pm+lPm=(l-g+2)l/Z- 4 -1’2=Ampm- B,, (5.18) 

where y is real and does not depend on m. Since 0 <q < 1 it is clear that we can choose an E 
with O<e<l and an integer m. such that I B,I > l+e and lAml <E for all m>mo. Since 
h’$ r) is not a polynomial we can find an m’ > m. such that a,+). Now either 1 pmp I > 1 or 
Ipm~l<l. If Ipm~I >l then a:,,, > a:,. If I pmt I ~1 then from the fact that 
Pm’+ 1Pm I =A,tp,~ - B,I we have Ipm~+lpm~I>IBm~I-~Am~pm~~>(l+~)-~ SO 
I pm#+lpmt I > 1 which implies that a;,,, > al,. Proceeding in this manner we can construct a 
sequence of integers p1 <p2 <p3 < * * * such that up,#O and ui,,, > u& for k= 1,2,... . Thus 
B$Yo d diverges and case 3 cannot occur. 

We have computed the following eigenvalues of %‘c, each with multiplicity one: 

q-5+m/2 , -(l-q)q”+mw2, m=0,1,2 ,... . 

Summing the squares of these eigenvalues we find 
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2 (q-25+2m/4+ (1 -q)y+2m)=Q -zte4+ (1 -q)sy%+ 
1- 

m=O 

in agreement with Eq. 
Theorem 2: 

( 5.12). Thus we have obtained the spectral resolution of the operator % ’ . 

c tq-so/z/,n+50@ i R( ~q(A+s)%,q-A-s~2/( 1 -q)02A. 
6o.=Z s=o 

Expanding the orthonormal basis (e?) , efs]} for K, co K. 

e~‘=Ilf~‘II-lf~‘, go~Z, m=0,1,2 ,..., 

e~l=Ilf~SIII-lf~l, ~,fn=0,1,2 ,..., 

in terms of the orthonormal basis Pj~eh, fj,h=0,1,2,... we obtain the Clebsch-Gordan 
coefficients 

(5.19) 
2 

Pj @eh. 
4 

These coefficients of the first and second hind 
tively. Furthermore, they satisfy the identities 

e,n; 
h; 

where j + h = co + m = ci 

a 
h; 
a 
h; 

vanish unless j+h=go+m, j+h=n, respec- 

(5.20a) 

a; 
h; 
a 
h; 

where j+h=co+m=n, and 

co 

=( 

W; /,A; /,A; 

m=O j; h; h’; 

=Sjjt * 

(5.2Ob) 

(5.2Oc) 

(5.2Od) 

where j + h = j’ + h’. Explicitly, we have 
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&0+:-h; 

a; (4;4)m(1-q)m-h 

h; ( 

-h 

x 141 qm4-h+*;4, 
- (1 -q)02q A+60+m+l 

e2 (5.21) 

and 

0; e,,n; (4;4)9( 1-q) -h4’ 
n-h; h; q=l (q;q)h(-(1-q)W2qL+n+i/e2;q)s(-e2q--L--n/02(1-q);q), 

X 
- (1 -q)oq’A+“‘n 

e - 6’“~“‘” 

(5.22) 

The completeness relation (5.2&l) leads to the special function identity 

mto (q;q)zzi$) -h m ’ 

m-h+l;q,--24 

-h’ 
(_ l)h+h’z(h+h’V2 

141 
4 

+ 

qm-h~+l;q,-q/z 

(--zq;q)m(-lI/Z;q), 

=t$htq-h’h-1)‘2(q;q)h, Z>o, h,h’=O,l,... . 

From Lemma 3 we have the identity 

X e,( aE_ 8 q(1’2)H) 

so the matrix elements with respect to the tensor product basis are given by 

= (E,(BE+ 8 q (n+h)n)eq(aE- 8 q”2+h”2)pj 8 eh,eq(i?q-j”2 o E,) 

X E,@q-“” 8 E- )Pjt 8 eh,) 
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(5.23) 

Thus the following identity, relating the matrix elements in the tensor product and reduced 
(S~~~@-)“‘( a$) ,$~~‘p-)“87A( a#)) bases must hold: 

(4) 

x$E+,e-) ~q’“+“‘~o,q-~-IpZ/cl-q)“*,n(a,~) w; e,;l; s 

~ffh’,jfk ‘I. J , h’; j’+h’ 

This leads to the identity 

b&q) h 

b(i+h,i’+h’) (q;q)j+h-ccy/z) j’-~q~(j+h-j’-h’)(j+h-j’-h’-l)-5(5fl)-~(j+h)]/2 

= c 
g=-02 (q;q)j+h-j~-h~(q;q)j1-5(4;4)i-5(--yq~/Z;q), 

-h 

,4_r+ 1% -Yqj+h+l/z 
4 

-h’ 
j’+h’+l/Z qj'-E+l;49-Yq 

X4h 
(i’--i)+i’( j’+1V21+1 

qg-j’-h’ 

ql+h-j’-h’+l;q,zq-P+j’h-j’-h’ 

m (q;q),(z/y)s-h( 1-q)j+h-j’-k’q-s(j’+h’)+h(h+j’)+k’~hr-1)/2 

+C 
3-0 (%q) j+h-j’-k’(q;q)s-k(q;q)~-h’( -zq-j’-h’-s/y;q) ,-,, 

4 -h 

x 141 g-h+l;q,--24 

x 141 
--zq -s- j’-k’iy 

&+h-j'-k'+l ;qP-Y# 7 

wherey/z>O, h,h’,&j,&j’=O,l,.... 

J. Math. Phys., Vol. 34, No. 11, November 1993 

Downloaded 29 Oct 2008 to 130.217.76.77. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



Kalnins, Miller, and Mukherjee: q-algebra representations: matrix elements 5355 

VI. A BARGMANN-SEGAL HILBERT SPACE BASIS 

It follows from the proof of Theorem 2 that for any real constant p>O the functions 
{h~(z),j~(z):m=0,1,2,...,) form an orthonormal basis for the Hilbert space Ko(z), Eqs. (2.5), 
(2.6). Here 

E(z) = 
(1 -q)“/2lu”(( 1 -q)q1’2z/J;q)), (-d’2z~PFl)m 

&m-1)/4 J 
(q;q)m(- ( l -q)P2q-“H)ce ’ 

j”,(z) = 
6”“( -q1’2z/p*q) (( 1-q)q1’2z/q) 

J(q;q)m(-( 1-4.);2;ilm(-P-2/( l ‘,Cq)os * 

(6.1) 

(6.2) 

Using relations (5.11) and the operators (2.2) associated with the representation t l,. on 
Ko(z) we can characterize {h(“, ,j$} as the orthonormal basis of eigenfunctions of the self- 
adjoint operator 

-(1-q)q1/2~-1(E+bl+flE-)+@-2-(1-q))fl. (6.3) 

Indeed h(“, corresponds to eigenvalue flpm2 and jz to eigenvalue - ( 1 -q)qm. 
To get a better understanding of this orthogonality we make use of the kernel function 

S(g,z) = ( - (1 - q)qg2;q)-), , Eq. (2.6), for K,(z). This function has the property that 
f(b) =tfmi - 1) f or any f EKO(z) and b&L It follows immediately that f EKO(z) is orthog- 
onal to the basis function h{ if and only if f ( -q-lnp) =O. Similarly, f EKo(z) is orthogonal 
to the basis function jt; if and only if f (( l-q) -‘q- 1’2/p) = 0. To extend this observation we 
make use of the following version of Heine’s q-*log of Gauss’ summation formula (Ref. 22, 
p. 11). 

Lemma 4: Let a,f3 be complex numbers with @#O. Then 

(aqe+1/~q)k-e(8q-e~q)e, ’ 7 k=O 12 , , ,*** * 

Setting a = -qln/p, k=m, and /3= ( 1 -q)q1’2p in Lemma 4 we can express h”, as a linear 
combination of the functions S( -q-1’2q-kp,z), k=O,l,...,m. Similarly, setting a 
= ( 1 -q)q’$, k= m, and /3= -q”2/p in Lemma 4 we can express jt as a linear combination 
of the functions S(( 1 -q)-1q-1’2q-k/p,z), k=O,l,..., m. In each case the expansion coefficients 
are all nonzero. These expansions yield an independent proof that the elements of the set 
B={h”,,,jk: m=O,l,...,) are mutually orthogonal. Moreover, we see that f EKO(z) is orthog- 
onal to all elements of B if and only if f (z) vanishes for all ZEM where iU={-qq-1’2q-kp, 
( 1 -q)-lq-lnqmk/,u, k=O,l,...,). However, we know from the proof of Theorem 2 that B is 
a basis for Ko(z). Hence, f EKO(z) vanishes for all ZEM if and only if f =O. 

Following Bargmann26 we say that a characteristic set D for the Hilbert space K,(z) is a 
subset of C such that if f EKO(z) and f(z) =0 for all ZE D then f SO. 

Theorem 3: The set 

{-q-lflq-kP,( l-q)-‘q-1’2q-k/p, k=O,l,...) 

is a characteristic set for the Hilbert space Ko(z). 
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