56,308 research outputs found

    Silicon containing electroconductive polymers and structures made therefrom

    Get PDF
    An electropolymerized film comprised of polymers and copolymers of a monomer is formed on the surface of an anode. The finished structures have superior electrical and mechanical properties for use in applications such as electrostatic dissipation and for the reduction of the radar cross section of advanced aircraft

    Development of a Molecular-Imprinted-Polymer based sensor for the electrochemical determination of Triacetone Triperoxide (TATP)

    Get PDF
    .The explosive triacetone triperoxide (TATP), which can be prepared from commercially readily available reagents following an easy synthetic procedure, is one of the most common components of improvised explosive devices (IEDs). Molecularly-imprinted polymer (MIP) electrochemical sensors have proved useful for the determination of different compounds in different matrices with the required sensitivity and selectivity. In this work, a highly sensitive and selective molecularly imprinted polymer with electrochemical capabilities for the determination of TATP has been developed. The molecular imprinting has been performed via electropolymerisation onto a glassy carbon electrode surface by cyclic voltammetry from a solution of pyrrole functional monomer, TATP template and LiClO4. Differential Pulse Voltammetry of TATP, with LiClO4 as supporting electrolyte, was performed in a potential range of −2.0 V to +1.0 V (vs. Ag/AgCl). Three-factor two-level factorial design was used to optimise the monomer concentration at 0.1 mol·L−1 , template concentration at 100 mmol·L−1 and the number of cyclic voltammetry scan cycles to 10. The molecularly imprinted polymer-modified glassy carbon electrode demonstrated good performance at low concentrations for a linear range of 82–44,300 µg·L−1 and a correlation coefficient of r2 = 0.996. The limits of detection (LoD) and quantification (LoQ) achieved were 26.9 μg·L−1 and 81.6 μg·L−1, respectively. The sensor demonstrated very good repeatability with precision values (n = 6, expressed as %RSD) of 1.098% and 0.55% for 1108 and 2216 µg·L−1 , respectively. It also proved selective for TATP in the presence of other explosive substances such as PETN, RDX, HMX, and TNT

    Flexible synthesis of polyfunctionalised 3-fluoropyrroles

    Get PDF
    An efficient and selective approach for the synthesis of polyfunctionalised 3-fluoropyrroles has been developed starting from commercial aldehydes. The methodology is concise, efficient and allows for the modular and systematic assembly of polysubstituted 3-fluoropyrroles. This synthesis provides an alternative and highly convergent strategy for the generation of these chemically and biologically important units

    Green synthesis of highly functionalized octahydropyrrolo[3,4-c]pyrrole derivatives using subcritical water, and their anti(myco)bacterial and antifungal activity

    Get PDF
    A series of novel 2-(thiazol-2-yl)-octahydropyrrolo[3,4-c]pyrroles was synthesized by reaction of octahydropyrrolo[3,4-c]pyrrole N-benzoylthiourea derivatives and α-haloketones in subcritical water at 130 °C in 75-91% yield. Both the thiourea intermediates and the end productswere synthesized in subcritical water, which proved a suitable green alternative to acetone by delivering the desired compounds in much shorter reaction times and practically the same yields. The antimicrobial activity of the compounds was determined against five bacterial strains and three fungal strains, and MIC values of 15.62-250 µg/mL were observed. Moreover, the compounds exhibited antimycobacterial activity against M. tuberculosis H37Rv with MIC values of 7.81-62.5 μg/mL

    Synthesis and Recognition Properties of Higher Order Tetrathiafulvalene (Ttf) Calix N Pyrroles (N=4-6)

    Get PDF
    Two new benzoTTF-annulated calix[n]pyrroles (n = 5 and 6) were synthesized via a one-step acid catalyzed condensation reaction and fully characterized via single crystallographic analyses. As compared to the known tetra-TTF annulated calix[4]pyrrole, which is also produced under the conditions of the condensation reaction, the expanded calix[n]pyrroles (n = 5 and 6) are characterized by a larger cavity size and a higher number of TTF units (albeit the same empirical formula). Analysis of the binding isotherms obtained from UV-Vis spectroscopic titrations carried out in CHCl3 in the presence of both anionic (Cl-, Br-, I-, CH3COO-, H2PO4-, and HSO4-) and neutral (1,3,5-trinitrobenzene (TNB) and 2,4,6-trinitrotoluene (TNT)) substrates revealed that as a general rule the calix[6]pyrrole derivative proved to be the most efficient molecular receptor for anions, while the calix[4]pyrrole congener proves most effective for the recognition of TNB and TNT. These findings are rationalized in terms of the number of electron rich TTF subunits and NH hydrogen bond donor groups within the series, as well as an ability to adopt conformations suitable for substrate recognition, and are supported by solid state structural analyses.National Science Foundation CHE 1057904, 0741973Robert A. Welch Foundation F-1018Danish Natural Science Research Council (FNU) 272-08-0047, 11-106744WCU (World Class University) program of Korea R32-2010-10217-0Villum FoundationChemistr

    In vivo imaging of pyrrole-imidazole polyamides with positron emission tomography

    Get PDF
    The biodistribution profiles in mice of two pyrrole-imidazole polyamides were determined by PET. Pyrrole-imidazole polyamides are a class of small molecules that can be programmed to bind a broad repertoire of DNA sequences, disrupt transcription factor-DNA interfaces, and modulate gene expression pathways in cell culture experiments. The 18F-radiolabeled polyamides were prepared by oxime ligation between 4-[18F]-fluorobenzaldehyde and a hydroxylamine moiety at the polyamide C terminus. Small animal PET imaging of radiolabeled polyamides administered to mice revealed distinct differences in the biodistribution of a 5-ring β-linked polyamide versus an 8-ring hairpin, which exhibited better overall bioavailability. In vivo imaging of pyrrole-imidazole polyamides by PET is a minimum first step toward the translation of polyamide-based gene regulation from cell culture to small animal studies
    corecore