92,515 research outputs found

    Wood pyrolisys using aspen plus simulation and industrially applicable model

    Get PDF
    Over the past decades, a great deal of experimental work has been carried out on the development of pyrolysis processes for wood and waste materials. Pyrolysis is an important phenomenon in thermal treatment of wood, therefore, the successful modelling of pyrolysis to predict the rate of volatile evolution is also of great importance. Pyrolysis experiments of waste spruce sawdust were carried out. During the experiment, gaseous products were analysed to determine a change in the gas composition with increasing temperature. Furthermore, the model of pyrolysis was created using Aspen Plus software. Aspects of pyrolysis are discussed with a description of how various temperatures affect the overall reaction rate and the yield of volatile components. The pyrolysis Aspen plus model was compared with the experimental data. It was discovered that the Aspen Plus model, being used by several authors, is not good enough for pyrolysis process description, but it can be used for gasification modelling

    Mechanism and Kinetics for the Initial Steps of Pyrolysis and Combustion of 1,6-Dicyclopropane-2,4-hexyne from ReaxFF Reactive Dynamics

    Get PDF
    We report the kinetic analysis and mechanism for the initial steps of pyrolysis and combustion of a new fuel material, 1,6-dicyclopropane-2,4-hexyne, that has enormous heats of pyrolysis and combustion, making it a potential high-energy fuel or fuel additive. These studies employ the ReaxFF force field for reactive dynamics (RD) simulations of both pyrolysis and combustion processes for both unimolecular and multimolecular systems. We find that both pyrolysis and combustion initiate from unimolecular reactions, with entropy-driven reactions being most important in both processes. Pyrolysis initiates with extrusion of an ethylene molecule from the fuel molecule and is followed quickly by isomerization of the fuel molecule, which induces additional radicals that accelerate the pyrolysis process. In the combustion process, we find three distinct mechanisms for the O2 attack on the fuel molecule: (1) attack on the cyclopropane, ring expanding to form the cyclic peroxide which then decomposes; (2) attack onto the central single bond of the diyne which then fissions to form two C_5H_5O radicals; (3) attack on the alkyne-cyclopropane moiety to form a seven-membered ring peroxide which then decomposes. Each of these unimolecular combustion processes releases energy that induces additional radicals to accelerate the combustion process. Here oxygen has major effects both as the radical acceptor and as the radical producer. We extract both the effective activation energy and the effective pre-exponential factor by kinetic analysis of pyrolysis and combustion from these ReaxFF simulations. The low value of the derived effective activation energy (26.18 kcal/mol for pyrolysis and 16.40 kcal/mol for combustion) reveals the high activity of this fuel molecule

    Numerical investigation of pyrolysis effects on heat transfer characteristics and flow resistance of n-decane under supercritical pressure

    Get PDF
    This is an open access article distributed under Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International license (CC BY-NC-ND 4.0) https://creativecommons.org/licenses/by-nc-nd/4.0/Pyrolysis of hydrocarbon fuel plays an important role in the regenerative cooling process. In this article, a Two-Dimensional (2D) numerical model is proposed to investigate the pyrolysis effects on the heat transfer characteristics and flow resistance of n-decane under supercritical pressure. The one-step global pyrolytic reaction mechanism consisting of 19 species is adopted to simulate the pyrolysis process of n-decane. The thermophysical and transport properties of the fluid mixture are computed and incorporated into the numerical model for simulation. Comparisons between the current predictions and the open published experimental data are carried out and good agreement is achieved. In order to better understand the complicated physicochemical process, further investigations on the turbulent flow and heat transfer coupled with pyrolysis in a tube have been performed under various operating conditions. The results indicate that the pyrolysis intensively takes place in the high fluid temperature region. The occurrence of the heat transfer deterioration would lead to increasing n-decane conversion at the beginning of the heated section. It is found that the pyrolysis could improve the heat transfer deterioration and promote the heat transfer enhancement. Meanwhile, pyrolysis gives rise to an abrupt increase of flow resistance. The mechanisms of the physicochemical phenomena are also analyzed in a systematic manner, which would be very helpful in the development of the regenerative cooling technology.Peer reviewe

    Pyrolysis of Dried Wastewater Biosolids Can Be Energy Positive

    Get PDF
    Pyrolysis is a thermal process that converts biosolids into biochar (a soil amendment), py-oil and py-gas, which can be energy sources. The objectives of this research were to determine the product yield of dried biosolids during pyrolysis and the energy requirements of pyrolysis. Bench-scale experiments revealed that temperature increases up to 500 °C substantially decreased the fraction of biochar and increased the fraction of py-oil. Py-gas yield increased above 500 °C. The energy required for pyrolysis was approximately 5-fold less than the energy required to dry biosolids (depending on biosolids moisture content), indicating that, if a utility already uses energy to dry biosolids, then pyrolysis does not require a substantial amount of energy. However, if a utility produces wet biosolids, then implementing pyrolysis may be costly because of the energy required to dry the biosolids. The energy content of py-gas and py-oil was always greater than the energy required for pyrolysis

    Nitrogen dioxide produced by self-sustained pyrolysis of nitrous oxide

    Get PDF
    Apparatus is developed for achieving continuous self-sustaining pyrolysis reaction in the production of nitrogen dioxide from nitrous oxide. The process becomes self-sustaining because of the exothermic reaction and the regenerative heating of the gases in the pyrolysis chamber

    Kinetics of the low-temperature pyrolysis of polyethene, polypropene and polystyrene modeling, experimental determination and comparison with literature models and data

    Get PDF
    The pyrolysis kinetics of low-density polyethylene, high-density polyethylene, polypropylene, and polystyrene has been studied at temperatures below 450 C. In addition, a literature review on the low-temperature pyrolysis of these polymers has been conducted and has revealed that the scatter in the reported kinetic data is significant, which is most probably due to the use of simple first-order kinetic models to interpret the experimental data. This model type is only applicable in a small conversion range, but was used by many authors over a much wider conversion range. In this investigation the pyrolysis kinetics of the forementioned polymers and a mixture of polymers has been studied at temperatures below 450 C by performing isothermal thermogravimetric analysis (TGA) experiments. The TGA experimental data was used to determine the kinetic parameters on the basis of a simple first-order model for high conversions (70-90%) and a model developed in the present study, termed the random chain dissociation (RCD) model, for the entire conversion range. The influence of important parameters, such as molecular weight, extent of branching and -scission on the pyrolysis kinetics was studied with the RCD model. This model was also used to calculate the primary product spectrum of the pyrolysis process. The effect of the extent of branching and the initial molecular weight on the pyrolysis process was also studied experimentally. The effect of the extent of branching was found to be quite significant, but the effect of the initial molecular weight was minor. These results were found to agree quite well with the predictions obtained from the RCD model. Finally, the behavior of mixtures of the aforementioned polymers was studied and it was found that the pyrolysis kinetics of the polymers in the mixture remains unaltered in comparison with the pyrolysis kinetics of the pure polymers

    The influence of pyrolitic degradation on mechanical properties of carbon fibres within recycling composite materials

    Get PDF
    The article deals with the influence of thermal pyrolytic degradation on mechanical properties of carbon fibres used in the production of composite material. The carbon fibre has been chosen as the reinforcement of composite and the resin formed a matrix (binder). During the pyrolysis process, the resin was eliminated and the carbon fibre was separated. Pyrolysis was carried out at temperatures of 450 °C, 550 °C and 650 °C. Subsequently also tensile tests were performed on the treated material to compare the mechanical properties of the fibres prior to pyrolysis and after decomposition. The results showed negative influence at the selected temperatures during the pyrolysis treatment on the mechanical properties of the carbon fibres

    Techno-economic performance analysis of biofuel production and miniature electric power generation from biomass fast pyrolysis and bio-oil upgrading

    Get PDF
    The techno-economic performance analysis of biofuel production and electric power generation from biomass fast pyrolysis and bio-oil hydroprocessing is explored through process simulation. In this work, a process model of 72 MT/day pine wood fast pyrolysis and bio-oil hydroprocessing plant was developed with rate based chemical reactions using Aspen Plus® process simulator. It was observed from simulation results that 1 kg s−1 pine wooddb generate 0.64 kg s−1 bio-oil, 0.22 kg s−1 gas and 0.14 kg s−1 char. Simulation results also show that the energy required for drying and fast pyrolysis operations can be provided from the combustion of pyrolysis by-products, mainly, char and non-condensable gas with sufficient residual energy for miniature electric power generation. The intermediate bio-oil product from the fast pyrolysis process is upgraded into gasoline and diesel via a two-stage hydrotreating process, which was implemented by a pseudo-first order reaction of lumped bio-oil species followed by the hydrocracking process in this work. Simulation results indicate that about 0.24 kg s−1 of gasoline and diesel range products and 96 W of electric power can be produced from 1 kg s−1 pine wooddb. The effect of initial biomass moisture content on the amount of electric power generated and the effect of biomass feed composition on product yields were also reported in this study. Aspen Process Economic Analyser® was used for equipment sizing and cost estimation for an nth plant and the product value was estimated from discounted cash flow analysis assuming the plant operates for 20 years at a 10% annual discount rate. Economic analysis indicates that the plant will require £16.6 million of capital investment and product value is estimated at £6.25/GGE. Furthermore, the effect of key process and economic parameters on product value and the impact of electric power generation equipment on capital cost and energy efficiency were also discussed in this study

    Effect of Pyrolysis on the Removal of Antibiotic Resistance Genes and Class I Integrons from Municipal Wastewater Biosolids

    Get PDF
    Wastewater biosolids represent a significant reservoir of antibiotic resistance genes (ARGs). While current biosolids treatment technologies can reduce ARG levels in residual wastewater biosolids, observed removal rates vary substantially. Pyrolysis is an anoxic thermal degradation process that can be used to convert biosolids into energy rich products including py-gas and py-oil, and a beneficial soil amendment, biochar. Batch pyrolysis experiments conducted on municipal biosolids revealed that the 16S rRNA gene, the ARGs erm(B), sul1, tet(L), tet(O), and the integrase gene of class 1 integrons (intI1) were significantly reduced at pyrolysis temperatures ranging from 300–700 °C, as determined by quantitative polymerase chain reaction (qPCR). Pyrolysis of biosolids at 500 °C and higher resulted in approximately 6-log removal of the bacterial 16S rRNA gene. ARGs with the highest observed removals were sul1 and tet(O), which had observed reductions of 4.62 and 4.04-log, respectively. Pyrolysis reaction time had a significant impact on 16S rRNA, ARG and intI1 levels. A pyrolysis residence time of 5 minutes at 500 °C reduced all genes to below detection limits. These results demonstrate that pyrolysis could be implemented as a biosolids polishing treatment technology to substantially decrease the abundance of total bacteria (i.e., 16S rRNA), ARGs and intI1 prior to land application of municipal biosolids
    • …
    corecore