16,515 research outputs found
Retrieving Precipitable Water Vapor From Shipborne Multi‐GNSS Observations
©2019. American Geophysical UnionPrecipitable water vapor (PWV) is an important parameter for climate research and a crucial factor to achieve high accuracy in satellite geodesy and satellite altimetry. Currently Global Navigation Satellite System (GNSS) PWV retrieval using static Precise Point Positioning is limited to ground stations. We demonstrated the PWV retrieval using kinematic Precise Point Positioning method with shipborne GNSS observations during a 20‐day experiment in 2016 in Fram Strait, the region of the Arctic Ocean between Greenland and Svalbard. The shipborne GNSS PWV shows an agreement of ~1.1 mm with numerical weather model data and radiosonde observations, and a root‐mean‐square of ~1.7 mm compared to Satellite with ARgos and ALtiKa PWV. An improvement of 10% is demonstrated with the multi‐GNSS compared to the Global Positioning System solution. The PWV retrieval was conducted under different sea state from calm water up to gale. Such shipborne GNSS PWV has the promising potential to improve numerical weather forecasts and satellite altimetry
Effects of exercise modalities on arterial stiffness and wave reflection: a systematic review and meta-analysis of randomized controlled trials
Background and Objectives:
Physical activity is associated with lower cardiovascular and all-cause mortality. However, the effects of different exercise modalities on arterial stiffness are currently unclear. Our objectives were to investigate the effects of exercise modalities (aerobic, resistance or combined) on pulse wave velocity (PWV) and augmentation index (AIx), and to determine whether the effects on these indices differed according to the participants' or exercise characteristics.
Methods:
We searched the Medline, Embase and Cochrane Library databases from inception until April 2014 for randomized controlled trials lasting ≥4 weeks investigating the effects of exercise modalities on PWV and AIx in adults aged ≥18 years.
Results:
Forty-two studies (1627 participants) were included in this analysis. Aerobic exercise improved both PWV (WMD: −0.63 m/s, 95% CI: −0.90, −0.35) and AIx (WMD:−2.63%, 95% CI: −5.25 to −0.02) significantly. Aerobic exercise training showed significantly greater reduction in brachial-ankle (WMD: −1.01 m/s, 95% CI: −1.57, −0.44) than in carotid-femoral (WMD: -0.39 m/s, 95% CI: −0.52, −0.27) PWV. Higher aerobic exercise intensity was associated with larger reductions in AIx (β: −1.55%, CI −3.09, 0.0001). In addition, aerobic exercise had a significantly larger effect in reducing PWV (WMD:−1.0 m/s, 95% CI: −1.43, −0.57) in participants with stiffer arteries (PWV ≥8 m/s). Resistance exercise had no effect on PWV and AIx. There was no significant effect of combined exercise on PWV and AIx.
Conclusions:
We conclude that aerobic exercise improved arterial stiffness significantly and that the effect was enhanced with higher aerobic exercise intensity and in participants with greater arterial stiffness at baseline.
Trial Registration PROSPERO:
Database registration: CRD42014009744,
Assessment of the potential of MERIS near-infrared water vapour products to correct ASAR interferometric measurements
Atmospheric water vapour is a major limitation for high precision Interferometric Synthetic Aperture Radar (InSAR) applications due to its significant impact on microwave signals. We propose a statistical criterion to test whether an independent water vapour product can reduce water vapour effects on InSAR interferograms, and assess the potential of the Medium Resolution Imaging Spectrometer (MERIS) near-infrared water vapour products for correcting Advanced SAR (ASAR) data. Spatio-temporal comparisons show c. 1.1mm
agreement between MERIS and GPS/radiosonde water vapour products in terms of standard deviations. One major limitation with the use of MERIS water vapour products is the frequency of cloud free conditions. Our analysis indicates that in spite of the low global cloud free conditions (~25%), the frequency can be much higher for certain areas such as Eastern Tibet (~38%) and Southern
California (~48%). This suggests that MERIS water vapour products show potential for correcting ASAR interferometric measurements in certain regions
Global Distribution of Water Vapor and Cloud Cover--Sites for High Performance THz Applications
Absorption of terahertz radiation by atmospheric water vapor is a serious
impediment for radio astronomy and for long-distance communications.
Transmission in the THz regime is dependent almost exclusively on atmospheric
precipitable water vapor (PWV). Though much of the Earth has PWV that is too
high for good transmission above 200 GHz, there are a number of dry sites with
very low attenuation. We performed a global analysis of PWV with
high-resolution measurements from the Moderate Resolution Imaging Spectrometer
(MODIS) on two NASA Earth Observing System (EOS) satellites over the year of
2011. We determined PWV and cloud cover distributions and then developed a
model to find transmission and atmospheric radiance as well as necessary
integration times in the various windows. We produced global maps over the
common THz windows for astronomical and satellite communications scenarios.
Notably, we show that up through 1 THz, systems could be built in excellent
sites of Chile, Greenland and the Tibetan Plateau, while Antarctic performance
is good to 1.6 THz. For a ground-to-space communication link up through 847
GHz, we found several sites in the Continental United States where mean
atmospheric attenuation is less than 40 dB; not an insurmountable challenge for
a link.Comment: 15 pages, 23 figure
The Uncertainty Relation in "Which-Way" Experiments: How to Observe Directly the Momentum Transfer using Weak Values
A which-way measurement destroys the twin-slit interference pattern. Bohr
argued that distinguishing between two slits a distance s apart gives the
particle a random momentum transfer \wp of order h/s. This was accepted for
more than 60 years, until Scully, Englert and Walther (SEW) proposed a
which-way scheme that, they claimed, entailed no momentum transfer. Storey,
Tan, Collett and Walls (STCW) in turn proved a theorem that, they claimed,
showed that Bohr was right. This work reviews and extends a recent proposal
[Wiseman, Phys. Lett. A 311, 285 (2003)] to resolve the issue using a
weak-valued probability distribution for momentum transfer, P_wv(\wp). We show
that P_wv(\wp) must be wider than h/6s. However, its moments can still be zero
because P_wv(\wp) is not necessarily positive definite. Nevertheless, it is
measurable in a way understandable to a classical physicist. We introduce a new
measure of spread for P_wv(\wp): half of the unit-confidence interval, and
conjecture that it is never less than h/4s. For an idealized example with
infinitely narrow slits, the moments of P_wv(\wp) and of the momentum
distributions are undefined unless a process of apodization is used. We show
that by considering successively smoother initial wave functions, successively
more moments of both P_wv(\wp) and the momentum distributions become defined.
For this example the moments of P_wv(\wp) are zero, and these are equal to the
changes in the moments of the momentum distribution. We prove that this
relation holds for schemes in which the moments of P_wv(\wp) are non-zero, but
only for the first two moments. We also compare these moments to those of two
other momentum-transfer distributions and \hat{p}_f-\hat{p}_i. We find
agreement between all of these, but again only for the first two moments.Comment: 14 pages, 6 figures, submitted to J. Opt.
Forecasting water vapour above the sites of ESO's Very Large Telescope (VLT) and the Large Binocular Telescope (LBT)
Water vapour in the atmosphere is the main source of the atmospheric opacity
in the infrared and sub-millimetric regimes and its value plays a critical role
in observations done with instruments working at these wavelengths on
ground-based telescopes. The scheduling of scientific observational programs
with instruments such as the VLT Imager and Spectrometer for mid Infrared
(VISIR) at Cerro Paranal and the Large Binocular Telescope Interferometer
(LBTI) at Mount Graham would definitely benefit from the ability to forecast
the atmospheric water vapour content. In this contribution we present a study
aiming at validating the performance of the non-hydrostatic mesoscale Meso-NH
model in reliably predicting precipitable water vapour (PWV) above the two
sites. For the VLT case we use, as a reference, measurements done with a Low
Humidity and Temperature PROfiling radiometer (LHATPRO) that, since a few
years, is operating routinely at the VLT. LHATPRO has been extensively
validated on previous studies. We obtain excellent performances on forecasts
performed with this model, including for the extremely low values of the PWV
(<= 1 mm). For the LBTI case we compare one solar year predictions obtained
with the Meso-NH model with satellite estimates again obtaining an excellent
agreement. This study represents a further step in validating outputs of
atmospheric parameters forecasts from the ALTA Center, an operational and
automatic forecast system conceived to support observations at LBT and LBTI.Comment: 15 pages, 8 figures, 11 tables, MNRAS accepted on 28 November 201
Production of regional 1 km x 1 km water vapor fields through the integration of GPS and MODIS data
<p>Atmospheric water vapor is a crucial element in weather, climate and hydrology. With the recent advance in Global Positioning System (GPS) Meteorology, ground-based GPS has become an operational tool that can measure precipitable water vapor (PWV) with high accuracy (1~1.5mm) during all-weathers, and with high temporal resolution (e.g. 5 minutes) at low cost. But the spatial coverage of GPS receivers is limited, and restricts its applications. At present, two NASA Moderate Resolution Imaging Spectroradiometer (MODIS) can provide global coverage 2D water vapor field with a spatial resolution of 1 km × 1 km (at nadir) every 2 days, and at many latitudes can provide water vapor fields every 90 minutes, 4 times a day. The disadvantages of MODIS water vapor products are: 1). A systematic uncertainty of 5-10% is expected [Gao et al., 2003; Li et al., 2003]; 2). Since the MODIS water vapor retrieval relies on observations of water vapor attenuation of near Infrared (IR) solar radiation reflected by surfaces and clouds, it is sensitive to the presence of clouds. The frequency and the percentage of cloud free conditions at mid-latitudes is only 15-30% on average [Li et al., 2004]. Therefore, in order to extract a water vapor field above the Earth’s surface, an attempt needs to be made to fill in the cloudy pixels.</p>
<p>In this paper, an inter-comparison between MODIS (collection 4) and GPS PWV products was performed in the region of the Southern California Integrated GPS Network (SCIGN). It is shown that MODIS appeared to overestimate PWV against GPS with a scale factor of 1.05 and a zero-offset of –0.7 mm. Taking into account the small standard deviation of the linear fit model, a GPS-derived correction linear fit model was proposed to calibrate MODIS PWV products, and a better agreement was achieved. In order to produce regional 1 km × 1 km water vapor fields, an integration approach was proposed: Firstly, MODIS near IR water vapor was calibrated using GPS data; secondly, an improved inverse distance weighted interpolation method (IIDW) was applied to fill in the cloudy pixels; thirdly, the densified water vapor field was validated using GPS data. It is shown that the integration approach was promising. After correction, MODIS and GPS PWV agreed to within 1.6 mm in terms of standard deviations using appropriate extent and power parameters of IIDW, and the coverage of water vapor fields increased by up to 21.6%.
In addition, for the first time, spatial structure functions were derived from MODIS near IR water vapor, and large water vapor variations were observed from time to time.</p>
- …