159,093 research outputs found
Bayesian estimation of the transmissivity spatial structure from pumping test data
Estimating the statistical parameters (mean, variance, and integral scale) that define the spatial structure of the transmissivity or hydraulic conductivity fields is a fundamental step for the accurate prediction of subsurface flow and contaminant transport. In practice, the determination of the spatial structure is a challenge because of spatial heterogeneity and data scarcity. In this paper, we describe a novel approach that uses time drawdown data from multiple pumping tests to determine the transmissivity statistical spatial structure. The method builds on the pumping test interpretation procedure of Copty et al. (2011) (Continuous Derivation method, CD), which uses the time-drawdown data and its time derivative to estimate apparent transmissivity values as a function of radial distance from the pumping well. A Bayesian approach is then used to infer the statistical parameters of the transmissivity field by combining prior information about the parameters and the likelihood function expressed in terms of radially-dependent apparent transmissivities determined from pumping tests. A major advantage of the proposed Bayesian approach is that the likelihood function is readily determined from randomly generated multiple realizations of the transmissivity field, without the need to solve the groundwater flow equation. Applying the method to synthetically-generated pumping test data, we demonstrate that, through a relatively simple procedure, information on the spatial structure of the transmissivity may be inferred from pumping tests data. It is also shown that the prior parameter distribution has a significant influence on the estimation procedure, given the non-uniqueness of the estimation procedure. Results also indicate that the reliability of the estimated transmissivity statistical parameters increases with the number of available pumping tests.Peer ReviewedPostprint (author's final draft
Low-cost, portable fire hose tester
Availability of pumping unit permits scheduling and performing required periodic hose tests in proper manner while retaining full fire equipment readiness. Use of pumping unit preserves operating life and capability of pumper truck
Magnetic shielding and vacuum test for passive hydrogen masers
Vibration tests on high permeability magnetic shields used in the SAO-NRL Advanced Development Model (ADM) hydrogen maser were made. Magnetic shielding factors were measured before and after vibration. Preliminary results indicate considerable (25%) degradation. Test results on the NRL designed vacuum pumping station for the ADM hydrogen maser are also discussed. This system employs sintered zirconium carbon getter pumps to pump hydrogen plus small ion pumps to pump the inert gases. In situ activation tests and pumping characteristics indicate that the system can meet design specifications
Tubing specifications selection and its effect on the results of hydraulic fracturing treatment in oil formations
Equipment specification, data collection and design
process are critical factors for any hydraulic fracturing
treatment success. This paper investigates tubing
specifications selection and its effect on the results of
hydraulic fracturing treatment in oil formations.
Simulations were carried out on well E-45 owned by
National Oil Corporation (NOC) of Libya using two
main tools - Pumping Diagnostic Analysis Toolkit
(PDAT) and Halliburton proprietary software package
(FracPro) for analysing Mini-Frac pumping data. The
initial modelling results using 3.5 inch tubing were
compared with the experimental results obtained from
the actual hydraulic fracturing tests carried out at the E45 by Halliburton as a sub-contractor for NOC. The
simulation results showed good agreement with the
experiments, validating the model.
The model was then extended to explore alternate tubing
diameters. This was implemented by introducing the
relationship between the tub friction pressures and
pumping rate (Friction Pressure vs. Pumping Rate) with
the mentioned tube sizes. The results showed that in
high stress rock formations, it is worthwhile to minimise
the pipe friction by using higher tubing grade (4.5
inches) and burst pressure. A bigger tubing inner
diameter can increase the allowable surface pumping
rate and pressure
Hydraulic Conductivity Imaging from 3-D Transient Hydraulic Tomography at Several Pumping/Observation Densities
[1] 3-D Hydraulic tomography (3-D HT) is a method for aquifer characterization whereby the 3-D spatial distribution of aquifer flow parameters (primarily hydraulic conductivity, K) is estimated by joint inversion of head change data from multiple partially penetrating pumping tests. While performance of 3-D HT has been studied extensively in numerical experiments, few field studies have demonstrated the real-world performance of 3-D HT. Here we report on a 3-D transient hydraulic tomography (3-D THT) field experiment at the Boise Hydrogeophysical Research Site which is different from prior approaches in that it represents a “baseline” analysis of 3-D THT performance using only a single arrangement of a central pumping well and five observation wells with nearly complete pumping and observation coverage at 1 m intervals. We jointly analyze all pumping tests using a geostatistical approach based on the quasi-linear estimator of Kitanidis (1995). We reanalyze the system after progressively removing pumping and/or observation intervals; significant progressive loss of information about heterogeneity is quantified as reduced variance of the K field overall, reduced correlation with slug test K estimates at wells, and reduced ability to accurately predict independent pumping tests. We verify that imaging accuracy is strongly improved by pumping and observational densities comparable to the aquifer heterogeneity geostatistical correlation lengths. Discrepancies between K profiles at wells, as obtained from HT and slug tests, are greatest at the tops and bottoms of wells where HT observation coverage was lacking
Generalizing Agarwal's method for the interpretation of recovery tests under non-ideal conditions
Pumping tests are performed during aquifer characterization to gain conceptual understanding about the system through diagnostic plots and to estimate hydraulic properties. Recovery tests consist of measuring head response in observation and/or pumping wells after pumping termination. They are especially useful when the pumping rate cannot be accurately controlled. They have been traditionally interpreted using Theis' recovery method, which yields robust estimates of effective transmissivity but does not provide information about the conceptual model. Agarwal proposed a method that has become standard in the oil industry, to obtain both early and late time reservoir responses to pumping from recovery data. However, the validity of the method has only been tested to a limited extent. In this work, we analyze Agarwal's method in terms of both drawdowns and log derivatives for non-ideal conditions: leaky aquifer, presence of boundaries, and one-dimensional flow. Our results show that Agarwal's method provides excellent recovery plots (i.e., the drawdown curve that would be obtained during pumping) and parameter estimates for nearly all aquifer conditions, provided that a constant pumping rate is used and the log derivative at the end of pumping is constant, which is too limiting for groundwater hydrology practice, where observation wells are usually monitored. We generalize Agarwal's method by (1) deriving an improved equivalent time for time-dependent pumping rate and (2) proposing to recover drawdown curves by extrapolating the pumping phase drawdowns. These yield excellent diagnostic plots, thus facilitating the conceptual model analysis for a broad range of conditions.Peer ReviewedPostprint (published version
Diode pumped Nd:YAG laser development
A low power Nd:YAG laser was constructed which employs GaAs injection lasers as a pump source. Power outputs of 125 mW TEM CW with the rod at 250 K and the pump at 180 K were achieved for 45 W input power to the pump source. Operation of the laser, with array and laser at a common heat sink temperature of 250 K, was inhibited by difficulties in constructing long-life GaAs LOC laser arrays. Tests verified pumping with output power of 20 to 30 mW with rod and pump at 250 K. Although life tests with single LOC GaAs diodes were somewhat encouraging (with single diodes operating as long as 9000 hours without degradation), failures of single diodes in arrays continue to occur, and 50 percent power is lost in a few hundred hours at 1 percent duty factor. Because of the large recent advances in the state of the art of CW room temperature AlGaAs diodes, their demonstrated lifetimes of greater than 5,000 hours, and their inherent advantages for this task, it is recommended that these sources be used for further CW YAG injection laser pumping work
Dynamic Behavior of Spiral-Groove and Rayleigh-Step Self-Acting Face Seals
Tests were performed to determine the dynamic behavior and establish baseline dynamic data for five self-acting face seals employing Rayleigh-step lift-pads and inward pumping as well as outward-pumping spiral grooves for the lift-generating mechanism. The primary parameters measured in the tests were film thickness, seal seat axial motion, and seal frictional torque. The data show the dynamic response of the film thickness to the motion of the seal seat. The inward-pumping spiral-groove seals exhibited a high-amplitude film thickness vibratory mode with a frequency of four times the shaft speed. This mode was not observed in the other seals tested. The tests also revealed that high film thickness vibration amplitude produces considerably higher average film thickness than do low amplitude film thickness vibrations. The seals were tested at a constant face load of 73 N (16.4 lb) with ambient air at room temperature and atmospheric pressure as the fluid medium. The test speed range was from 7000 to 17000 rpm. Seal tangential speed range was 34.5 to 83.7 m/sec (113 to 274 ft/sec)
Liquid-hydrogen rocket engine development at Aerojet, 1944 - 1950
This program demonstrated the feasibility of virtually all the components in present-day, high-energy, liquid-rocket engines. Transpiration and film-cooled thrust chambers were successfully operated. The first liquid-hydrogen tests of the coaxial injector was conducted and the first pump to successfully produce high pressures in pumping liquid hydrogen was tested. A 1,000-lb-thrust gaseous propellant and a 3,000-lb-thrust liquid-propellant thrust chamber were operated satisfactorily. Also, the first tests were conducted to evaluate the effects of jet overexpansion and separation on performance of rocket thrust chambers with hydrogen-oxygen propellants
Experimental cold-flow evaluation of a ram air cooled plug nozzle concept for afterburning turbojet engines
A concept for plug nozzles cooled by inlet ram air is presented. Experimental data obtained with a small scale model, 21.59-cm (8.5-in.) diameter, in a static altitude facility demonstrated high thrust performance and excellent pumping characteristics. Tests were made at nozzle pressure ratios simulating supersonic cruise and takeoff conditions. Effect of plug size, outer shroud length, and varying amounts of secondary flow were investigated
- …
