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Abstract Pumping tests are performed during aquifer characterization to gain conceptual understanding
about the system through diagnostic plots and to estimate hydraulic properties. Recovery tests consist of
measuring head response in observation and/or pumping wells after pumping termination. They are
especially useful when the pumping rate cannot be accurately controlled. They have been traditionally
interpreted using Theis’ recovery method, which yields robust estimates of effective transmissivity but does
not provide information about the conceptual model. Agarwal proposed a method that has become
standard in the oil industry, to obtain both early and late time reservoir responses to pumping from recovery
data. However, the validity of the method has only been tested to a limited extent. In this work, we analyze
Agarwal’s method in terms of both drawdowns and log derivatives for non-ideal conditions: leaky aquifer,
presence of boundaries, and one-dimensional flow. Our results show that Agarwal’s method provides
excellent recovery plots (i.e., the drawdown curve that would be obtained during pumping) and parameter
estimates for nearly all aquifer conditions, provided that a constant pumping rate is used and the log
derivative at the end of pumping is constant, which is too limiting for groundwater hydrology practice, where
observation wells are usually monitored. We generalize Agarwal’s method by (1) deriving an improved
equivalent time for time-dependent pumping rate and (2) proposing to recover drawdown curves by
extrapolating the pumping phase drawdowns. These yield excellent diagnostic plots, thus facilitating the
conceptual model analysis for a broad range of conditions.

1. Introduction

Hydraulic testing is the most widely used technique for aquifer systems characterization and the only one
providing direct estimates of aquifer parameters through the interpretation of the aquifer response to
pumping or other hydraulic perturbations. Well testing results are a function of the range and the quality
of the drawdown and rate data available and of the approach used for their interpretation
(Gringarten, 2008).

Pumping test interpretation emerged largely from the Theis (1935) analytical solution for the drawdown
caused in an ideal homogeneous, infinite, and confined aquifer by pumping at a constant rate Q from a fully
penetrating well. A feature of this solution is that, when sufficient time has elapsed since the beginning of
pumping, the drawdown increases linearly with the logarithm of time. This feature prompted Cooper and
Jacob (1946; CJ in the following) to develop the straight line method for applying Theis’ method through a
manageable logarithmic approximation of the analytical solution, which works very well also for a broad
range of conditions, including heterogeneous formations (Halford et al., 2006; Meier et al., 1998).

Rereading the paper of Theis (1935) is joyful, because he himself identified the numerous limitations of
his solution (we suspect that his USGS colleagues and reviewers must have helped). In reality, aquifers
are rarely homogeneous or fully confined and they have boundaries. Storage release is not instantaneous
but delayed with respect to head variations. Wells do not fully penetrate the aquifer and may have sig-
nificant storage. Over the years, hydrologists and oil engineers developed numerous analytical solutions
to overcome these limitations (see, e.g., Kruseman & de Ridder, 1990). While the main purpose of these
methods was to estimate transmissivity T and storage coefficient S, they realized that drawdown curves
contain a wealth of information about the well and the aquifer beyond the actual value of hydraulic para-
meters. Unfortunately, the large number of solutions and the subtle variations among them made it dif-
ficult to identify which one is best.
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Prompted by the need to emphasize conceptual model identification,
Bourdet et al. (1983, 1989) proposed using diagnostic plots (simulta-
neous plot of drawdowns and log derivatives) to highlight subtle var-
iations in the aquifer response to pumping (Renard et al., 2009).
Diagnostic plots are useful, because they complement other informa-
tion (local geology, geophysics, well logs, etc.) in identifying non-ideal
conditions during the pumping test. Given the qualitative nature of
the conceptual model selection, it is nice to be able to examine diag-
nostic plots that can be compared to those of standard models or
simply be used to assess how the resistance to flow evolves away
from the pumping well.

But precisely because of their high sensitivity, log derivatives require
exquisite test performance. While methods can be used to obtain smooth
log derivatives (Ramos et al., 2017), they require a constant pumping rate,
which is difficult to guarantee. Pumping rate can change for numerous
reasons. For one thing, well owners do not care for transmissivity but for
well production, which can be improved through development and ascer-
tained through step pumping. Even when a pumping test is performed,
maintaining a constant pumping rate during the whole test may be diffi-
cult. Pump efficiency may cause the pumping rate to decrease over time
(Figure 1), variations of well efficiency often cause the pumping rate to
increase over time, and electrical problems can cause short black outs

(zero flow rate). A constant rate may prove impossible in low permeability formations, when the well often
goes dry or when pumping by air lift. Things may get even worse when trying to interpret the hydraulic
response to fracking. What can be done in all these cases is to monitor pumping rate and
drawdowns recovery.

Recovery data (i.e., residual drawdowns measured after pumping has stopped) are much less noisy than
pumping data because they are subject to less external perturbations during data acquisition (Figure 1).
Specifically, pumping rate variability does not affect the aquifer response directly but only indirectly.
However, residual drawdowns are affected by environmental fluctuations (e.g., seasonal changes in
recharge, tidal effects, uncontrolled nearby pumping, and stage changes in close rivers), which usually
dominate the late time recovery and must be filtered out prior to interpretation (see, e.g., Halford
et al., 2012). The traditional method for recovery interpretation was also proposed by Theis (1935). The
method is quite robust in estimating effective transmissivity values over a region that grows with the
duration of pumping (Copty et al., 2011; Willmann et al., 2007) but lacks information about the storage
coefficient. Numerous methods have been introduced to overcome this limitation (Agarwal, 1980;
Ashjari, 2013; Ballukraya & Sharma, 1991; Banton & Bangoy, 1996; Chenaf & Chapuis, 2002; Çimen,
2015; Zheng et al., 2005), which suggests that recovery data contain information similar to that of the
pumping phase of the test. Most of these methods are straight line methods based on CJ’s approximation
that allow evaluating hydraulic parameters but do not yield any information about the conceptual model.
Yet Agarwal (1980) introduced a method, based on CJ’s approximation, to reproduce the response of a
pumping test using recovery test data. In other words, his method permits plotting recovery data as if
they resulted from a constant pumping rate, facilitating not only the estimation of hydraulic parameters
but also conceptual model assessment.

Given its simplicity, Agarwal’s method should be considered as a very effective method for well test
data interpretation. In fact, it has become the method of choice in the oil industry. Agarwal (1980)
showed that his method reproduced the type curves of Earlougher and Kersch (1974) and
Gringarten et al. (1979) that account for skin effect and wellbore storage. He also tested the validity
for the case of a well intersected by a vertical fracture. However, the method lacks theoretical support
for conditions other than those of CJ.

The objective of this work is to (1) analyze the conditions under which Agarwal’s method is valid, to (2) gen-
eralize it for variable pumping rate, and to (3) propose alternative methods for recovery data interpretation.

Figure 1. Drawdown and drawdown residual as a consequence of a pump-
ing test carried out applying a variable pumping rate. The pumping rate
decrease with the time, becoming constant for a while after pumping
shutdown.
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2. Methods

We first describe Agarwal’s method. We then analyze the validity of the
method,whichnaturally leads toanewapproach thatovercomes the limita-
tions. Finally, we propose a method for variable pumping rate conditions.

2.1. Agarwal’s Method

Agarwal initially developed his method for recovery test interpretation
with the implicit assumption of an ideally large, homogeneous, and con-
fined aquifer, subject to a constant pumping rate from a fully penetrating
well for a sufficiently long time. Under these conditions, flow toward the
well is radial, and the CJ equation yields a good approximation for late
time drawdowns, that is, s(t) = (Q/4πT) ln (2.25Tt/r2S), where Q is pumping
rate and r is distance to the center of the pumping well or effective radius
of the well when computing drawdowns at the pumping well itself. Based
on the superposition principle, this author defined what we now call
Agarwal drawdown as (Figure 2):

sA tð Þ ¼ s tp
� �� sR tð Þ ¼ s tp

� �� s tð Þ � s t � tp
� �� �

t > tp; (1)

where t is the time elapsed since the beginning of pumping, tp is the time at the end of pumping, and sR(t) is
the (Theis) residual drawdown. The latter “will be the same as if discharge of the well had continued but a
recharge well with the same flow had been introduced at the same point at the instant discharge stopped”
(Theis, 1935).

That is, superposition implies that sR(t) = s(t)� s(t� tp). Agarwal then used the CJ’s approximation to the three
drawdowns appearing in equation (1), which yields

sA tð Þ ¼ Q
4πT

ln
2:25Ttp
r2S

� �
� ln

2:25Tt
r2S

� �
þ ln

2:25T t � tp
� �
r2S

� �� �
¼ Q

4πT
ln

2:25T
r2S

tA

� �
: (2)

The resulting equation has exactly the same form as that of CJ for a pumping test but using tA, implicitly
defined as tA = tp(t � tp)/t , instead of t. Therefore, Agarwal proposed, without further justification, treating
sA versus tA as the drawdown curve caused by pumping Q. This is quite surprising because the CJ’s approx-
imation does not hold for small recovery times (t � tp), and yet the method works fine.

Four nice features of this approximation are worth pointing. First, tA is comparable to (t � tp) when tp and
t are comparable (i.e., when tp is large). Second, when t tends to infinity, tA tends to tp, that is, Agarwal’s
method will not yield a (pumping) drawdown curve longer than the pumping period. Third, sA can be
obtained directly from measured variables (drawdown at the end of pumping and residual drawdown).
Fourth, as we shall see, the method works quite well. All of them explain the success of the method in
the oil industry, where application is immediate, as the test simply consists of monitoring the pressure
build-up after well shut-in. Still, general applications demand justification and, possibly, seeking
alternative approximations.

2.2. Justification and Limitations of Agarwal’s and Theis’ Recovery Methods

This section analyzes the assumption of long time constant pumping rate needed by Agarwal’s method to
adopt the CJ’s approximation. This limitation can be mathematically analyzed by approximating the
Agarwal’s drawdown solution with an infinite series. Let us recall first that, in reality, the CJ’s approxima-
tion represents the leading term, for large times, of the full Theis solution, which we rewrite in dimension-
less variables as

sD tDð Þ ¼ �γþ ln 4tDð Þ þ 1
4tD

� 1

2·2!· 4tDð Þ2 þ
1

3·3!· 4tDð Þ3 �…þ �1ð Þn
n·n!· 4tDð Þn þ…; (3)

where γ is the Euler constant (γ = 0.57721…), sD is dimensionless drawdown (sD = 4πTs/Q) and tD is dimension-
less time (tD = t/tc = Tt/Sr2). We have chosen to keep the term 4tD without further simplifications in

Figure 2. Pumping and recovery test. The left graph displays the residual
drawdown, sR, used in Theis recovery method and Agarwal’s drawdown, sA.
Both can be computed by superposition (right) of a continuous pumping
(+Q) and an injection (�Q) that start at the time tpwhen pumping stopped in
reality.
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equation (3) to facilitate comparison with the expression in terms of u (1/4tD) typically used in well hydraulics.
Substituting equation (3) in the dimensionless form of equation (1), that is, after multiplying (1) times 4πT/Q,
we obtain (after some elementary but tedious algebra):

sAD ¼ �γþ ln 4tADð Þ þ 1
4tAD

� 1
4tD

� �
� 1
2·2!

1

4tADð Þ2 �
t2pD � tDtpD � 2t2D
42t2DtpD tD � tpD

� � !
þ…; (4)

where tpD = tp/tc and tAD = tA/tc. Comparing equations (3) and (4), it becomes obvious that they are identical,
up to second order, except for the term 1/4tD in (4), which becomes negligible when tD is large. The first-order
term is also the one controlling the error in the CJ’s approximation of the Theis’ solution (equation (3)), which
suggests that Agarwal’s method is valid under the same conditions that CJ’s approximation would be valid at
the end of the pumping phase. Note, however, that the second-order term can be large for small (tD � tpD)
and declines only as 1/(tD � tpD) when tD increases (i.e., the error may persist for a sizeable time for small
dimensionless times). These conditions, that is, large tpD and (tD � tpD), are easy to meet at the pumping well
where the characteristic time is small but not necessarily at the observation well (e.g., for an aquifer with
T = 100m2/day, S = 0.1, and well radius r = 0.1 m, tc = 10�5day ≅ 1 s, but tc = 0.9 day, at an observation located
at r = 30 m). This explains the success of the method in the oil industry, where reservoir tests are routinely
performed in production wells but suggests that it may fail at observation wells.

It is interesting to perform the same analysis for Theis (1935) recovery method, which consists of plotting resi-
dual drawdown (ideally, sR(t) = s(t) � s(t � tp)) versus tR = t/(t � tp):

sRD ¼ ln tRð Þ � tpD
4tD tD � tpD
� �þ…; (5)

where sRD = 4πTsR/Q. Note that the error is large for small (tD � tpD). Therefore, it is not, and was never meant
to be, appropriate for early time recovery. But the error declines fast as both absolute time since the begin-
ning of pumping, tD, and recovery time, tD � tpD, increase. In fact, it becomes smaller than Agarwal method
for very long recovery (tD ≫ tpD). Moreover, it does not require tpD to be large. In fact, it can be used to inter-
pret slug tests. This fast decline explains the success of Theis recovery method but also highlights that it is
important to keep measuring recovery for a long time. In practice, measuring recovery for a long time after
the stop of pumping (and for a comparable time prior to the beginning) is of practical importance to detect
head fluctuations caused by factors other than pumping, which is especially important in observation wells. A
last comment, the error displayed in equation (5) can be eliminated (thus leaving only higher order terms) if
CJ’s approximation is extended to include the 1/4tD term in equation (3), which leads to an extended and
more accurate interpretation method (Çimen, 2015).

2.3. Proposed Method

The above analysis suggests an alternative method for interpreting recovery data that overcomes Agarwal’s
requirement of long pumping time and facilitates the use of early time data from which quantitative, but
above all qualitative information can be gained. In fact, as many factors affect short-time data, a great deal
of useful information can be obtained, helping in the selection of the most appropriate theoretical aquifer
model (Gringarten et al., 1979; Ramey, 1970). The fact that the essential assumption behind the Agarwal’s
method is that the logarithmic approximation is valid (together with practical experience) suggests using
CJ’s approximation or any other that the modeler deems appropriate to transform the recovery test draw-
down information into that of a pumping test:

sM t � tp
� � ¼ sap tð Þ � sR tð Þ t > tp; (6)

where sap(t) is an approximation of s(t) that depends on the modeler’s assumption about the behavior of the
system. The two most immediate options are (1) sap(t) = s(tp) + m · ln (t/tp), if the modeler assumes that
flow is radial (dimension n = 2) and that a constant slope has been reached or (2) sap(t) = s(tp) + (2m/(2 � n))
((t/tp)

1 � n/2 � 1), if themodeler assumes a power lawbehavior of the log derivative (i.e., that flowoccurs with
a dimension nother than 2). In either case,m is the log derivative at the end of the pumping phase, or the slope
of the drawdown data, divided by 2.3, if they are plotted versus log10t (traditional CJ semi-log plot).

10.1029/2018WR022684Water Resources Research

TRABUCCHI ET AL. 4



The new approximation (equation (6)) differs from that of Agarwal
(equation (1)) as the delay in the aquifer response after pumping shut-
down is taken into consideration. In fact, instead of a constant value
s(tp), an extrapolated function sap(t) has been considered to evaluate
the pumping test drawdown that would have occurred at t > tp if a
longer pumping test had been carried out (Figure 3). As the defined
function is a straight line with slope m, the new approximation sap(t)
tends to CJ’s one if quasi steady radial regime has been reached.
Otherwise, in transient regime, a straight line with a lower slope will
be generated. The latter condition is easy to meet in observation wells
where the characteristic time is greater compared to that of the pump-
ing well. Consequently, the aquifer response shows a delay (drawdown
may increase for some time after pumping shut-in) that can be seen as
if the pumping time period would last longer than that in the pumping
well. As Agarwal’s method was originally developed to analyze data
recorded in the pumping well itself (as usually done in the oil and gas
industry), the aquifer system behavior for transient time is not taken
into account and insufficient pumping time periods lead to negative
Agarwal’s drawdown.

Applying the proposed method, it is important to underline that (1)
we use recovery time (t � tp) to plot residual drawdown, which means plot data on the same time
scale of that of producing time; (2) the evaluation of sM can be easily performed using the last pump-
ing time data and recovery data series; (3) as we shall see, the method works quite well, allowing to
obtain early-time data curves from recovery data even when the dimensionless duration of pumping
is short; but (4) late time values of sM(t) are virtually identical to sap(t) because sR(t) tends to 0 (recall
Figure 2). Because of this last remark, sM(t) should not be used for recovery times longer than that
at which sR(t) tends to 0.

2.4. Variable Pumping Rate

We generalize here Agarwal, Theis and other methods to acknowledge time-dependent pumping rate dur-
ing the interpretation of recovery data. Time variability of pumping rate has been addressed by numerous
authors, including Agarwal (1980). The goal has been typically to interpret pumping test data and the
method consists of using either superposition (Birsoy & Summers, 1980; Neville & van der Kamp, 2012;
van der Kamp, 1989) or deconvolution (von Schroeter et al., 2002). Given the difficulties of the latter,
and the specificities of recovery test analysis, we adopt an approach similar to that of Birsoy and
Summers (1980) but taking advantage of the fact that the last portion of the pumping phase is often
performed at a constant rate. Therefore, we assume that the pumping rate fluctuates only up to time
tcQ (Figure 1). Thereafter, the pumping rate is constant (Qc). We decompose the pumping rate as the
sum of Qc, which lasts over the whole pumping interval and a variable pumping rate Q0(t):

Q tð Þ ¼ Qc þ Q
0
tð Þ; (7)

where we assume that Q0 becomes 0 after time tcQ. Using superposition again, we write the total drawdown
as s(t) = sc(t) + s0(t), where sc(t) and s0(t) are the drawdowns caused by Qc and Q0(t), respectively. Assuming
that t ≫ tc, so that steady radial regime has been established near the pumping well, s0(t) can be calculated
as the sum of the residual drawdowns produced by infinitesimal (or discrete, in the case of step tests) pump-
ing rate steps, dQ0, from the beginning of the step (at time τ) until the end (at time tcQ):

s
0
tð Þ ¼ ∫

tcQ

0

1
4πT

dQ
0

dτ
ln

t � τ
t � tc

� �
dτ ¼ Qc

4πT
ln EIð Þ; (8)

s tð Þ ¼ Qc

4πT
ln

2:25Tt EI tð Þ
r2S

� �
; (9)

where EI is implicitly defined in (8) as

Figure 3. Graph showing the different drawdown terms used for the estima-
tion of both Agarwal (sA) and the proposed drawdown (sM). It is important to
underline the aquifer delay in responding to the pumping shut-in (residual
drawdown sR at early recovery times).
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EI tð Þ ¼ exp ∫
tcQ

0

1
Qc

dQ
0

dτ
ln

t � τ
t � tcQ

� �
dτ

" #
(10)

We illustrate the use of equation (10) by application to a step drawdown test with Q(t) = Qi, ti ≤ t< ti + 1, i = 1,

N, where N is the number of steps, and tN = tcQ (pumping rate is Qc during the last step), then dQ
0
=dτ ¼ ∑Ni¼1

Qi � Qi�1ð Þδ ti � τð Þ, with Q0 = QN = Qc (Figure 2). With these definitions,

EI tð Þ ¼∏
N�1

i¼1
t � ti
t � tcQ

� �ΔQi=Qc

; (11)

where ΔQi = Qi � Qi � 1. This equation is similar to those of Birsoy and Summers (1980) and Agarwal (1980),
except that they add each step independently. In the case of Birsoy and Summers (1980), their choice made
sense because they were seeking an approximation of drawdown during pumping, but it is somewhat less
accurate if Q0 is indeed small and zero after tcQ.

Mishra et al. (2013) argued that step approximations may not be appropriate for smoothly varying flow rates
and proposed a Laplace transform solution for timewise linear flow rate. Equation (10) can also be easily inte-
grated in this case. Assume that the pumping rate varies linearly between point measurements, Q(ti) = Qi,
i = 1, N, with possible jumps at t1 [ΔQ1 = Q1 � Qc] and tN = tcQ [ΔQN + 1 = Qc � QN], when EI becomes (again
easy but tedious integration)

EI tð Þ ¼ t � t1
t � tcQ

� �ΔQ1=Qc t � tN
t � tcQ

� �ΔQNþ1=Qc∏N

i¼2
t � ti�1

e t � tcQð Þ
� �ΔQi=Qc t � ti�1

t � ti

� �mi t�tið Þ=Qc

; (12)

where e = 2.718 is the Euler’s number. Using either equation (11) or (12) in (9) leads to an equivalent time, tEI(t),
for all approximations of drawdowns caused by pumping (but not by recovery). Therefore, using (8) for s(t)
and s(tp) in equation (1) yields

sAc tð Þ ¼ s tp
� �� sR tð Þ ¼ Qc

4πT
· ln

2:25T
r2S

tp t � tp
� �

EI tp
� �

tEI tð Þ
� �

; (13)

which suggests a modified Agarwal time:

btA ¼ tp t � tp
� �

EI tp
� �

tEI tð Þ : (14)

With the new corrected timebtA, it becomes feasible to interpret recovery test data, as themark left by the past
pumping history over the recovery signal has been taken into consideration. Obviously, this equivalent time
should be used also to correct Theis recovery time (tR) or, for the proposed alternative (section 2.3), the
recovery time (tr = t � tp).The modified times would result in

btR ¼ tEI tp
� �

t � tp
and btr ¼ t � tp

� �
EI tp
� �

EI tð Þ : (15)

It is important to underline that the application of the proposed method (sM) jointly with an equivalent

time (btrÞ would allow interpreting hydraulic tests characterized by a short pumping period and variable
pumping rate.

This algorithm has been implemented in a spreadsheet available from the GHS-UPC software web page
at https://h2ogeo.upc.edu/es/investigacion-hidrologia-subterrania/software/599-recovery-test-interpretation.

3. Performance of Recovery Test Interpretation Methods
3.1. Ideal Conditions: Importance of the Duration of Pumping

As discussed in section 2.2, Agarwal’s method requires that the pumping period has been long enough to
reach linear behavior in semilogarithmic scale. Thus, we test here how the pumping time tpD can affect the
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interpretation of recovery data for both Agarwal’s and the proposed method (Figure 4). To this end, we
compare the ideal pumping solution (Theis) with the corresponding diagnostic plot determined by (1) the
Agarwal’s drawdown curve, that is, the plot of sA versus tA obtained from the recovery test data and (2) the
method proposed in section 2.3. The aim is to evaluate the effect of pumping and recovery duration on
the recovery test interpretation, performed with both Agarwal’s and the new proposed method, thus
analyzing the validity of both.

The pumping durations tp are chosen in terms of the characteristic time tc of the observation well because
pumping tests are usually designed bearing in mind that a sizable response should start at 0.1tc (i.e., pumping
time tpD = 0.1, recall that tc = r2S/T) and CJ’s slope starts developing at tc (tpD = 1). In well hydraulics, u = 1/4tD
is often used instead of tD, and the validity of CJ’s approximation is usually restricted to u< 0.03 (i.e., tpD> 8).
Therefore, we have chosen three different pumping times (tpD = 0.5, 1, 10). The recovery time trD = tD � tpD
has been fixed to be four times the pumping time period (trD = 4tpD).

Figure 4 displays two different patterns in the application of Agarwal’s method. First, the longer the produ-
cing period, the better the whole curves fit Theis’ solution, approaching a perfect match when tpD = 10. In
fact, late time drawdowns do not reach a quasi steady state behavior (constant log derivative), unless a long
producing period is applied. Second, the match of Agarwal curves to the ideal pumping solution improves
with recovery time. Agarwal solution is poor for early times. In fact, when pumping is short, Agarwal yields
negative drawdowns and negative log derivatives at early times. Both observations are consistent with the
discussion of section 2.2.

The proposed method also improves with the producing period duration. However, the types of errors are
complementary to those of Agarwal. On the one hand, the fit to the ideal Theis solution worsens for long
recovery times, reaching a fictitious quasi steady state behavior, which reflects the log derivative at the
end of the pumping period, which is different from the real one of the aquifer system. On the other hand,
early times data perfectly match the ideal solution.

Figure 4. Diagnostic plots representing recovery test interpretation in an ideal Theis aquifer for three different pumping
durations using Agarwal’s recovery method (above) and the proposed method (below). The ideal pumping test solution
(Theis) is shown as reference.
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The accuracy of these methods can be further analyzed by estimating the absolute relative error of both the
drawdown and its log derivative, defined as

ϵs ¼ spump tð Þ � srec tcorrð Þ
spump tð Þ

���� ���� ϵm ¼ mpump tð Þ �mrec tcorrð Þ
mpump tð Þ

���� ���� 0 < t ¼ tcorr < tp; (16)

where spump and mpump are respectively the theoretical drawdown curve and its log derivative associated
with the Theis’ solution, srec andmrec are the corresponding corrected recovery values used in the interpreta-
tion, that is, srec = sA for the Agarwal’s method and srec = sM for the proposed interpretation method, and tcorr
is the corrected time determined as tA and tr depending on the interpretation method. It is important to
underline that, assuming proportionality between estimated transmissivity and drawdown log derivative
values (long pumping times), the relative error ϵm expresses that the estimated transmissivity value Test dif-
fers from the exact value T by a factor given by Test = T (1 � ϵm)

�1.

The absolute value of the relative errors is shown in Figure 5, which displays in a log-log plot their recovery
time evolution for three pumping durations. Figure 5 makes it clear that (1) the longer the producing time,
the smaller the errors associated with both methods; (2) the errors of Agarwal’s method for the drawdown
and its log derivative decay with recovery time (which is consistent with equation (4)), although errors in
log derivative tend to increase at late time; (3) the errors of the proposed method are smaller than those
of Agarwal’s method at any given time tD. This effect is dramatically important when tr is small, at early recov-
ery times. Here more than 1 order of magnitude difference is noted; and (4) the errors of the proposed
method rapidly decay initially (up to tD ≈ 0.1 � 0.2) but tend to increase slightly thereafter.

We finally acknowledge that the advantages given by the proposed method must be taken with care as the
accuracy of the proposed method relies on how sap(t) is selected in equation (6). In this context, we content
that this conceptual decision will be only important at late times but not at early times where the perfor-
mance of the method is best.

At this stage, it is worth mentioning here that the errors presented in Figure 5 are always positive, that is,
Agarwal’s method underestimates the drawdown and its log derivative, except for late recovery times (after
the singularity where error values approach 0). In this region, the relative error of the drawdown log deriva-
tive given by Agarwal’s method becomes negative. Importantly, the interpretation of the late-time recovery
data with Agarwal’s method will underestimate the transmissivity of an aquifer.

3.2. Non-Ideal Conditions: Effects of Boundaries and Flow Dimension

Aside from long pumping times, others assumptions were required for the development of Agarwal’s
method, as the aquifer is assumed to be large, homogeneous, confined, and characterized by radial flow.
Thus, we analyze here the effect of departures from these assumptions: (1) presence of a no-flow

Figure 5. Relative errors of drawdowns and log derivatives resulting from both Agarwal’s (line) and the proposed method
(dash dot) under ideal conditions for three different pumping durations. Note that the errors of the proposed method are
below those of Agarwal for any given pumping duration and that both methods improve with increasing pumping
duration.
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boundary given by an impermeable barrier defined by r
02/r2 = 100, where r0 is the radial distance from the

image well (image well theory) to the observation well, (2) a constant head boundary (constant head defined
by the same characteristic time as for the no-flow boundary condition), (3) a leaky aquifer characterized by
the dimensionless number BD = B/r, where B is the leakage factor and r is the distance from the pumping well
to the observation well, and (4) a drainage line (flow dimension of one to test the impact of varying the
flow dimension).

We compare the analytical solutions to these problems with the corresponding diagnostic plots determined
by the Agarwal’s drawdown curve (Figure 6, top rows) and those determined by the application of the
proposed method (Figure 6, bottom rows). Still, the aim is to investigate the validity of the methods under
non-ideal conditions.

Three different simulations have been carried out for each scenario with pumping times tpD = 1, 10, 100. The
recovery time has been fixed to trD = 4tpD. It is important to underline that, compared to the previous analysis,
we have now adopted longer pumping times tpD to ensure that boundary effects can be observed.

As can be seen in the graphs, the performance of Agarwal’s method for the one-dimensional flow is different
than for other boundary effects. In fact, in the latter case it is possible to find the same pattern as that found
for ideal conditions: The longer the producing period, the better the whole curves fit the analytical solution. In
particular, early times present important mismatches for short producing periods and late times (late recov-
ery times) do not clearly reproduce the ideal pumping curve. However, in the one-dimensional flow system
solution, the curves fail to match the analytical solution for either short or long producing periods.

The proposed method works very well in matching the analytical solution for early times, even considering
short producing periods. However, its performance for late recovery time data depends on the duration of
pumping. Finally, the recovery test interpretation carried out for one-dimensional flow perfectly resembles
the analytical solution.

3.3. Non-Ideal Conditions: Variable Pumping Rate

Until now, the validity of recovery test methods has been analyzed for constant pumping rate. However, as
discussed in the introduction, this condition is often difficult to meet (in fact, it is this difficulty that motivates
our emphasis in recovery analysis in the first place). We discuss here the effect of time-dependent pumping
rate (see Figure 1) for ideal (Theis) aquifer conditions.

We have chosen a cubic law variable flow rate term Q0 (recall equation (7)), written as

Q
0
tð Þ ¼ Q

0
max � Q

0
max

3
2

t
tcQ

� �
� 1
2

t
tcQ

� �3
" #

0 < t ≤ tcQ; (17)

Q
0
tð Þ ¼ 0 tcQ < t ≤ tp; (18)

whereQ
0
max is themaximum value ofQ0(t), which occurs at t = 0, tcQ is the time at whichQ0(t) becomes equal to

0 and depends on the parameter Rt as tcQ = Rttp. In addition, the constant pumping rate Qc is proportional to
Q

0
max by a constant Rq ¼ Qc=Q

0
max. Fixing the pumping time tp = 10tc and the recovery time tr = 4tp, multiple

simulations have been run, considering different couples of Rt and Rq values. In this case, the aim is that of
testing Agarwal’s method, using both Agarwal’s time (section 2.1) and the modified one (section 2.4). In order
to compare different solutions, the drawdown produced by an equivalent pumping rate (constant rate,
pumping the same water volume pumped during the hydraulic test in the same time period) has been
calculated. Hereafter, it is referred to as the ideal pumping solution.

As in the previous two sections, diagnostic plots are compared in terms of dimensionless variables. For the
comparison, we keep constant the dimensionless duration, tpD, and themagnitude of the pumping rate varia-
bility, Rq, while changing the period over which pumping rate is variable, as measured by Rt. As shown in
Figure 7, the longer the duration of pumping rate variation (high Rt), the worse Agarwal’s solution reproduces
that of an ideal pumping drawdown. The interpretation of the same hydraulic test through the adoption of
the equivalent time (equation (14)) leads to a correct reproduction of the ideal solution. In short, if the pump-
ing rate is variable, the variability must be acknowledged for the interpretation of recovery data.
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4. Application to Real-World Data Sets

The proposed method is used to interpret two cross-hole hydraulic tests performed at the Grimsel under-
ground laboratory in Switzerland (FEBEX tunnel). The site description as well as the hydraulic test

Figure 6. Diagnostic plots representing recovery test interpretation under non-ideal conditions. Three different pumping times have been analyzed applying both
Agarwal (top two rows) and the proposed method (bottom two rows). The analytical solution for pumping is shown as a reference.
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performance and interpretation have been presented by Martinez-Landa and Carrera (2005, 2006). We have
chosen these tests to illustrate the performance, strengths, and weaknesses of the methods.

4.1. Example A: Long Pumping Test and Fast Aquifer Response

This test corresponds to the water injection at point I2-1 and head measurements obtained at point F22-3,
described byMartinez-Landa and Carrera (2006). The observation point is located 2.86m away from the injec-
tion point and recorded drawdowns are produced by a constant pumping rate of 418.2 m3/day for a pump-
ing period tp = 4.63 days and a recovery period tr = 0.6tp. The quasi steady state has been reached during
pumping, which can be seen qualitatively in Figure 8 and confirmed quantitatively by the characteristic time
of the observation point (tc = 0.22 days, obtained from the transmissivity and storativity resulting from inter-
pretation of the drawdown curve or a dimensionless pumping time tpD = 21.47). Under these conditions, both
Agarwal and the proposed method (section 2.3) should work given our previous discussion.

Figure 8a shows the resulting diagnostic plots, while the estimated hydraulic properties obtained during the
recovery and the pumping period are reported in Table 1 (example A). The diagnostic plot shows three data
sets: the drawdown produced during the actual pumping and the recovery data plotted as drawdown esti-
mated by both Agarwal and the proposed method. As expected, both methods lead to good results: The
curves present an almost perfect match with the actually measured drawdown data. Consequently, the same
conceptual model can be inferred. Moreover, similar results have been achieved in terms of estimated
hydraulic properties, as both transmissivity and storage coefficient values present quite insignificant differ-
ences compared to those obtained with the drawdown data.

4.2. Example B: Short Pumping Test and High Delay in Aquifer Response

In this second example, we interpret the cross-hole test resulting from injecting water at Fbx2-04 and obser-
ving head levels at point F13-2 (Martinez-Landa & Carrera, 2005). The observation point is located 10.72 m

Figure 7. Diagnostic plots obtained from recovery data after pumping an ideal Theis aquifer at a variable rate (total pump-
ing duration, tpD = 10, and ratio between constant and maximum pumping rate deviation, Rq = 0.2). Three different values
of Rt (ratio of variable rate to total pumping time) have been analyzed. The plots have been obtained both assuming
constant pumping rate (above) and acknowledging its variability by means of equation (8)) (below).
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away from the injection point and recorded drawdowns are produced by a constant flow rate of
496.8 m3/day. As can be seen in Figure 8, the quasi steady state has not been reached, due to a
unexpected shutdown of the pump that resulted in a pumping time tp = 0.4 days and a long recovery
time tr = 3.7tp (data presented by Martinez-Landa and Carrera correspond to the full test). Remarkably, the
residual drawdown clearly shows a high delay of the aquifer response as drawdown keeps increasing for a
while after pumping shutdown. Both behaviors should be expected because of the long characteristic
time of the observation point tc = 3.03 days (value obtained from the interpretation of the drawdown
curve proceeding from a long pumping period). It results in a dimensionless pumping time tpD = 0.13, far
from tpD = 1 needed to get the whole transient response and clearly far from reaching quasi state conditions.

Given the circumstances, Agarwal and the proposed method (section 2.3) lead to different results. As
expected, Agarwal performs very poorly. In fact, the recovery is so slow that the residual drawdown was lar-
ger than the drawdown at the end of pumping for a long time, so that Agarwal drawdowns remained

Figure 8. On the left side, the drawdown data related to two different hydraulic test performances (example A, above, and
example B, below) have been plotted. On the right side, the diagnostic plots of the drawdown curves (black line), as
well as of data resulting from the application of both Agarwal (red line) and the proposed method (blue line)
have been presented.

Table 1
Hydraulic Properties Estimated Applying the Method to Real-World Data Sets

Test Drawdown log derivative (m) Transmissivity (m2/day) Jacob time (day) Storage coeff. (�)

Example A
Drawdown data 5.808 6.632·10�5 0.096 1.745·10�6

Agarwal 5.410 7.120·10�5 0.079 1.540·10�6

Proposed 5.277 7.299·10�5 0.067 1.356·10�6

Example B
Drawdown data 5.033 9.091·10�5 1.348 2.401·10�6

Agarwal 3.780 1.210·10�4 0.267 6.332·10�7

Proposed 3.214 1.650·10�4 0.265 7.381·10�7

Note. The estimated hydraulic parameters applying both Agarwal and the proposed method are presented and com-
pared with those estimated using drawdown data obtained from long pumping tests. Example A refers to the hydraulic
test with long pumping period, while example B refers to the one with short pumping period.
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negative for a good portion of the recovery. Application of the proposed method led to a constant late time
slope that was larger than the one at the end of pumping. While this is not surprising, given the short dura-
tion of pumping, it shows that recovery data contains information representative of a period that may be
longer than that of pumping. Therefore, we followed an iterative process: The slopem, used to estimate sap(t),
has been iteratively replaced by the slope calculated using the last values of sM. Throughout the iterations,
the m value tends to a constant that has been used for the last estimation of sM.

Figure 8b shows the resulting diagnostic plots. The corresponding estimated hydraulic properties are
reported in Table 1 (example B), together with those estimated from the drawdown data that refers to a long
pumping test performed after the unintentional switching off. It is clear that Agarwal’s data do not reproduce
the actual drawdown data. Instead, the proposed method results in a positive drawdown that matches quite
well drawdown data. The log derivative is positive and fits well the actual pumping test log derivative at early
times but diverge at late times, until reaching a fictitious quasi steady state regime, which turns out to be
close to the one obtained from the long test described by Martinez-Landa and Carrera (2005). That means
that we can adequately reproduce the aquifer response and therefore infer a proper conceptual model. In
terms of hydraulic properties estimation, the difference is not as relevant as the information that one can
obtained from the diagnostic plot.

5. Discussion and Conclusions

We have analyzed Agarwal’s method validity under ideal and non-ideal conditions, generalizing it for time-
dependent pumping rate and proposing an alternative method for recovery test interpretation to be applied
especially under non-ideal conditions. Our results can be summarized as it follows:

1. Residual drawdowns contain as much information as pumping test data, which is qualitatively and
quantitatively valuable. Moreover, they are much less influenced by pumping perturbations, resulting in
a much gentler and complete time series to be interpreted. Therefore, the analysis of recovery data must
be considered as a great choice for the characterization of aquifer systems through hydraulic testing.
The only drawback of recovery data is their sensitivity to environmental head fluctuations (especially at
observation points, where the head signal induced by pumping may be small, and at late times, when
environmental fluctuations may be larger than the residual drawdown). Therefore, emphasis must be
placed during test design, which should consider a long observation period both prior and, especially, after
the pumping period to facilitate filtering of environmental head fluctuations to obtain residual drawdowns.

2. The Agarwal’s method should be considered as a very effective method for recovery data interpretation
because it is simple and may yield drawdown curves virtually identical to those obtained during pumping
with constant rate, thus facilitating the use of diagnostic plots for quantitative and qualitative analyses.
This is true under ideal conditions of radial flow (including boundary effects), provided that the dimen-
sionless pumping time is long enough to develop the fully radial regime as ascertained by a constant
CJ (semi-log plot) slope (log derivative).

3. The Agarwal method fails to reproduce the pumping drawdown curves in an appropriate way when the
duration of pumping is so short that the constant slope has not started to develop (i.e., when the dimen-
sionless time Tt/Sr2 is less than 1). In practice, this restricts the applicability of the method to the pumping
well, for which it was originally developed, unless the duration of pumping is very long or the aquifer is
confined.

4. The Agarwal method may also fail for nonradial flow (i.e., when the late time slope is nonconstant). We
tested the method for a flow dimension of one, and the method did not work even for long producing
periods.

5. We proposed an alternative method (equation (6)) to overcome Agarwal’s limitations that works very
well both under ideal and non-ideal conditions, especially during early time recovery. The main limita-
tion of the proposed method, when compared to Agarwal’s, is that its duration is artificially unlimited
(Agarwal time will never be longer than the pumping time). This implies that our late time drawdowns
may suggest a quasi steady state regime that is fictitious, as it reflects the assumption made in approx-
imating drawdowns during recovery. Surprisingly, the method performed quite well during application
to a real case where the dimensionless pumping duration had been very short, which suggests that the
proposed method may be valid for recovery times beyond the pumping duration.
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6. The previous discussion suggests that a possibility would be to blend both methods (i.e., use the pro-
posed method for early time recovery and Agarwal’s for late time). This possibility has not been fully
explored for two reasons. First, the proposed method tends to work better than Agarwal for the short
dimensionless pumping durations typical of observation wells, which are frequent in hydrology (as
opposed to petroleum engineering) and where we discourage the use of Agarwal method. Second, the
primary use of the methods we are discussing here is for drawing diagnostic plots, which help in defining
the conceptual model. Once this has been identified, quantitative interpretation can be best achieved
through numerical modeling of the full test (pumping and recovery), while acknowledging the variability
of pumping rates, so that whether radial flow regime has been reached becomes irrelevant.

7. We proposed an alternative equivalent time to treat recovery data from variable pumping rate (both step-
wise and piecewise linear) that allows accounting for the influence of pumping rate variability during
recovery data interpretation using our proposed method or Agarwal’s. The test example (Figure 7) makes
it clear that acknowledging for the time variability of pumping rate is critical. Therefore, pumping rate
must be monitored carefully. This is also important for Theis’ recovery method that remains the method
of choice for the estimation of transmissivity from late time data.
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