726 research outputs found

    Distributed Basis Pursuit

    Full text link
    We propose a distributed algorithm for solving the optimization problem Basis Pursuit (BP). BP finds the least L1-norm solution of the underdetermined linear system Ax = b and is used, for example, in compressed sensing for reconstruction. Our algorithm solves BP on a distributed platform such as a sensor network, and is designed to minimize the communication between nodes. The algorithm only requires the network to be connected, has no notion of a central processing node, and no node has access to the entire matrix A at any time. We consider two scenarios in which either the columns or the rows of A are distributed among the compute nodes. Our algorithm, named D-ADMM, is a decentralized implementation of the alternating direction method of multipliers. We show through numerical simulation that our algorithm requires considerably less communications between the nodes than the state-of-the-art algorithms.Comment: Preprint of the journal version of the paper; IEEE Transactions on Signal Processing, Vol. 60, Issue 4, April, 201

    On Cooperative Beamforming Based on Second-Order Statistics of Channel State Information

    Full text link
    Cooperative beamforming in relay networks is considered, in which a source transmits to its destination with the help of a set of cooperating nodes. The source first transmits locally. The cooperating nodes that receive the source signal retransmit a weighted version of it in an amplify-and-forward (AF) fashion. Assuming knowledge of the second-order statistics of the channel state information, beamforming weights are determined so that the signal-to-noise ratio (SNR) at the destination is maximized subject to two different power constraints, i.e., a total (source and relay) power constraint, and individual relay power constraints. For the former constraint, the original problem is transformed into a problem of one variable, which can be solved via Newton's method. For the latter constraint, the original problem is transformed into a homogeneous quadratically constrained quadratic programming (QCQP) problem. In this case, it is shown that when the number of relays does not exceed three the global solution can always be constructed via semidefinite programming (SDP) relaxation and the matrix rank-one decomposition technique. For the cases in which the SDP relaxation does not generate a rank one solution, two methods are proposed to solve the problem: the first one is based on the coordinate descent method, and the second one transforms the QCQP problem into an infinity norm maximization problem in which a smooth finite norm approximation can lead to the solution using the augmented Lagrangian method.Comment: 30 pages, 9 figure

    Optimal mistuning for enhanced aeroelastic stability of transonic fans

    Get PDF
    An inverse design procedure was developed for the design of a mistuned rotor. The design requirements are that the stability margin of the eigenvalues of the aeroelastic system be greater than or equal to some minimum stability margin, and that the mass added to each blade be positive. The objective was to achieve these requirements with a minimal amount of mistuning. Hence, the problem was posed as a constrained optimization problem. The constrained minimization problem was solved by the technique of mathematical programming via augmented Lagrangians. The unconstrained minimization phase of this technique was solved by the variable metric method. The bladed disk was modelled as being composed of a rigid disk mounted on a rigid shaft. Each of the blades were modelled with a single tosional degree of freedom

    Distributed reactive power feedback control for voltage regulation and loss minimization

    Full text link
    We consider the problem of exploiting the microgenerators dispersed in the power distribution network in order to provide distributed reactive power compensation for power losses minimization and voltage regulation. In the proposed strategy, microgenerators are smart agents that can measure their phasorial voltage, share these data with the other agents on a cyber layer, and adjust the amount of reactive power injected into the grid, according to a feedback control law that descends from duality-based methods applied to the optimal reactive power flow problem. Convergence to the configuration of minimum losses and feasible voltages is proved analytically for both a synchronous and an asynchronous version of the algorithm, where agents update their state independently one from the other. Simulations are provided in order to illustrate the performance and the robustness of the algorithm, and the innovative feedback nature of such strategy is discussed
    corecore