175 research outputs found

    Proxy Convexity: A Unified Framework for the Analysis of Neural Networks Trained by Gradient Descent

    Full text link
    Although the optimization objectives for learning neural networks are highly non-convex, gradient-based methods have been wildly successful at learning neural networks in practice. This juxtaposition has led to a number of recent studies on provable guarantees for neural networks trained by gradient descent. Unfortunately, the techniques in these works are often highly specific to the problem studied in each setting, relying on different assumptions on the distribution, optimization parameters, and network architectures, making it difficult to generalize across different settings. In this work, we propose a unified non-convex optimization framework for the analysis of neural network training. We introduce the notions of proxy convexity and proxy Polyak-Lojasiewicz (PL) inequalities, which are satisfied if the original objective function induces a proxy objective function that is implicitly minimized when using gradient methods. We show that stochastic gradient descent (SGD) on objectives satisfying proxy convexity or the proxy PL inequality leads to efficient guarantees for proxy objective functions. We further show that many existing guarantees for neural networks trained by gradient descent can be unified through proxy convexity and proxy PL inequalities.Comment: 15 page

    Quality-Of-Control-Aware Scheduling of Communication in TSN-Based Fog Computing Platforms Using Constraint Programming

    Get PDF
    In this paper we are interested in real-time control applications that are implemented using Fog Computing Platforms consisting of interconnected heterogeneous Fog Nodes (FNs). Similar to previous research and ongoing standardization efforts, we assume that the communication between FNs is achieved via IEEE 802.1 Time Sensitive Networking (TSN). We model the control applications as a set of real-time streams, and we assume that the messages are transmitted using time-sensitive traffic that is scheduled using the Gate Control Lists (GCLs) in TSN. Given a network topology and a set of control applications, we are interested to synthesize the GCLs for messages such that the quality-of-control of applications is maximized and the deadlines of real-time messages are satisfied. We have proposed a Constraint Programming-based solution to this problem, and evaluated it on several test cases
    • …
    corecore