
Quality-Of-Control-Aware Scheduling of
Communication in TSN-Based Fog Computing
Platforms Using Constraint Programming
Mohammadreza Barzegaran1

DTU Compute, Technical University of Denmark, Kongens Lyngby, Denmark
mohba@dtu.dk

Bahram Zarrin
DTU Compute, Technical University of Denmark, Kongens Lyngby, Denmark
baza@dtu.dk

Paul Pop
DTU Compute, Technical University of Denmark, Kongens Lyngby, Denmark
paupo@dtu.dk

Abstract
In this paper we are interested in real-time control applications that are implemented using Fog
Computing Platforms consisting of interconnected heterogeneous Fog Nodes (FNs). Similar to
previous research and ongoing standardization efforts, we assume that the communication between
FNs is achieved via IEEE 802.1 Time Sensitive Networking (TSN). We model the control applications
as a set of real-time streams, and we assume that the messages are transmitted using time-sensitive
traffic that is scheduled using the Gate Control Lists (GCLs) in TSN. Given a network topology and
a set of control applications, we are interested to synthesize the GCLs for messages such that the
quality-of-control of applications is maximized and the deadlines of real-time messages are satisfied.
We have proposed a Constraint Programming-based solution to this problem, and evaluated it on
several test cases.

2012 ACM Subject Classification Networks → Traffic engineering algorithms; Computer systems
organization → Embedded software; Theory of computation → Constraint and logic programming

Keywords and phrases TSN, Fog Computing, Constraint Programming, Quality of Control

Digital Object Identifier 10.4230/OASIcs.Fog-IoT.2020.3

Funding Mohammadreza Barzegaran: The research leading to these results has received funding
from the European Union’s Horizon 2020 research and innovation programme under the Marie
Skłodowska-Curie grant agreement No. 764785, FORA – Fog Computing for Robotics and Industrial
Automation.

1 Introduction

In this paper we focus on Fog Computing Platforms (FCPs) for Industrial Control Applica-
tions, consisting of heterogeneous fog nodes (FNs). We consider that FNs are interconnected
using a deterministic communication solutions such as IEEE 802.1 Time Sensitive Networking
(TSN) [7]. TSN consists of a set of amendments to the IEEE 802.1 Ethernet standard that
introduce real-time and safety critical aspects, e.g., IEEE 802.1Qbv defines a Time-Aware
Shaper (TAS) mechanism that enables the scheduling of messages based on a global schedule
table. The scheduling relies on a clock synchronization mechanism 802.1ASrev [9], which
defines a global notion of time. The configuration of the communication infrastructure in an

1 corresponding author

© Mohammadreza Barzegaran, Bahram Zarrin, and Paul Pop;
licensed under Creative Commons License CC-BY

2nd Workshop on Fog Computing and the IoT (Fog-IoT 2020).
Editors: Anton Cervin and Yang Yang; Article No. 3; pp. 3:1–3:9

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/296708937?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://orcid.org/0000-0003-0640-6653
mailto:mohba@dtu.dk
https://orcid.org/0000-0001-8790-9396
mailto:baza@dtu.dk
https://orcid.org/0000-0001-9981-1775
mailto:paupo@dtu.dk
https://doi.org/10.4230/OASIcs.Fog-IoT.2020.3
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

3:2 QoC-Aware Scheduling of Communication in TSN

FCP has an impact on the performance of controllers, which are the main components of
industrial applications. The main focus of this paper is to configure an FCP in terms of the
scheduling of messages on TSN [5] such that the control performance is maximized.

Fog Computing has received a lot of attention recently [11], and several researchers have
proposed the use of TSN in an FCP as a means of achieving deterministic communication
for dependable industrial applications [12]. There has been a lot of work on task scheduling
for control performance [14], including considering Fog-based implementations [1]. Although
researchers have proposed approaches to derive the schedule tables in TSN for Time-Sensitive
(TS) traffic, e.g., via Satisfiability Modulo Theories (SMT) [5] and metaheuristics [13] only
one work so far has addressed the issue of control performance [10] for industrial applications.
[10] focuses on the problem of routing and scheduling of messages to achieve control stability,
but ignores the specifics of scheduling TS traffic in TSN, which does not allow the control of
individual frames. Instead, only the status of the queue gates can be controlled via Gate
Control Lists (GCLs). This may lead to non-determinism of message scheduling, which has
to be carefully considered during the GCL synthesis.

In this paper, we propose a constraint programming (CP)-based GCL synthesis strategy
aiming at maximizing the quality-of-control (QoC) . We employ meta-heuristic search
strategies in CP solvers to reduce the computation time needed to find optimized solutions.

2 System Model

2.1 Architecture Model

We model the system architecture as a graph G = {V, E} and a set of routes R, where V is
a set of vertices that represents nodes, and E is a set of edges, where an edge represents a
physical link between two nodes. A node νi ∈ V is either an end-system, which may be the
source (talker) or the destination (listener) of a stream, or a switch, which forwards messages
to the other nodes. A physical link is a full-duplex bidirectional link εi,j ∈ E (equivalent to
εj,i) that logically links the nodes νi and νj . A logical link εi,j is characterized by the tuple
< s, d,mt > denoting the speed of the port in Mbit/s, the transmission delay of the port
and the time granularity (macrotick) of an event for the port in micro-seconds. According to
IEEE 802.1Qbv [8], we assume 8 queues for each link εi,j which connects the egress port of
the node νi to the ingress port of the node νj .

The transmission delay of a link, εi,j .d, is captured by the function h(c) which gets the
size of a stream’s frame c, as input, and is given for every link. Given that each stream has a
known size and it is forwarded through a port with a known speed, the transmission time
of the stream’s frames can be easily determined. For example, transmitting a maximum
transmission unit (MTU)-sized IEEE 802.1Q Ethernet frame of 1,542 bytes on a 1 Gbit/s
link would take 12.33 µs. The MTU-sized frame is the maximum size of a single data unit
that can be transmitted over a network.

A route ri ∈ R is an ordered list of links, starting with a link originating in a talker end
system, and ending with a link in a listener end system. The number of links in the route ri

is denoted with |ri|. We define the function u : R× N0 → E to capture the jth link of the
route ri. We assume that each stream is associated to only one route but several streams
may share the same route. We also assume that the streams are unicast which impose
that there is only one talker and one listener for a stream. Our model can be extended to
multicast streams.

M. Barzegaran, B. Zarrin, and P. Pop 3:3

2.2 Application Model
We model a control application as a set of streams S. A stream si ∈ S is captured by
the tuple < p, c, t, d, j > denoting the priority, the message size in bytes, the period in
milliseconds, the deadline, i.e., the maximum allowed end-to-end delay, and the maximum
allowed jitter, both in milliseconds. Since, we assume 8 queues for each link, the priority of a
massage is given from 0 to 7. The number of instances for stream si is denoted with |si|, and
is derived from the period of the stream t and the hyperperiod which is the least common
multiple of the periods of all streams. For example, for three streams with the periods of 4, 5
and 3 ms, the hyperperiod would be 60 ms and the streams will have 15, 12 and 20 instances
respectively.

The stream si is transmitted via a route rj which is captured by the function z : S → R
that maps the streams to the routings. We define a frame for each instance 0 ≤ k < |si|
of the stream si and on each link 0 ≤ m < |rj | of the route rj , and denote it with fk

i,m. A
frame fk

i,m is associated with the tuple < φ, l > denoting the start time of the frame (offset φ)
and its duration (length l).

2.3 Time-Sensitive Transmission in TSN
The internal of a TSN switch is depicted in Fig. 1, where the switching fabric receives streams
form ingress ports and forwards each stream to the egress port that is determined in the
internal routing tables. In this paper, we assume all the streams are using the Time-Sensitive
(TS) class for the transmission.

We assume that each of the egress ports has eight priority queues and each priority queue
stores the forwarded stream in First-In-First-Out (FIFO) order. A subset of the queues is
reserved for Scheduled Traffic (ST) according to the Priority Code Point (PCP) defined in
the frame header; and the remaining queues are used for other, less critical, traffic.

According to the 802.1Qbv standard, a gate is associated to each of the queues which
controls the traffic flow by opening and closing that are determined in the predefined Gate
Control List (GCL). An open gate only allows the transition of queued traffic from the
predetermined egress port. When multiple gates are open at the same time on the same
egress port, the highest priority queue blocks other gates until closing.

Figure 1 TSN switch internals.

Fog- IoT 2020

3:4 QoC-Aware Scheduling of Communication in TSN

3 Problem Formulation

We formulate the problem as follows: Given (1) a set of streams S, (2) a network graph G,
and (3) a set of routings R, we want to determine the GCLs such that the streams are
schedulable (their deadlines are satisfied) and the QoC, as defined in Sect. 4, is maximized.
In this paper we assume, similar to [5], that the GCLs are deterministic, i.e., the streams
are isolated from each other: Only the frames of one of the streams are present in a queue
at a time. Hence, the GCL synthesis problem is equivalent to determining (i) the offsets of
frames fk

i,m.φ, and (2) their duration fk
i,m.l. The offset of a frame maps to when the gate

should be open and the duration of the frame maps to how long it should be open.

4 Control Performance

A control application takes input form sensors, processes data, calculates output, and sends
the output to actuators. Various communication links are used to link senors and actuators
to the processing elements where control output is calculated. A control application is
dependent on time, i.e., timing of data sampling from sensors, calculation of control output
and actuation of actuators, which affects the control performance. The control performance
is degraded when the delay between sampling and actuation is more than what the controller
is designed for or when the delay varies in each iteration, see [3] for more details.

In this paper, we consider that the communication between sensors, processing elements
and actuators is based on TSN. We schedule the sensor and actuator messages along with
other messages, and the control performance degrades when the control-related messages
experience jitter, defined in our case as the variation among the end-to-end delays of a message.
We use JitterTime to analyse the Quality-of-Control (QoC), which is used interchangeably
to mean “control performance”. JitterTime simulates a control application using the given
timing for sampling and actuation and calculates the QoC using the given quadratic cost
function, see [4] for details.

For the examples and test cases in the paper, we consider that the control tasks implement
a control application consisting of a dynamical system, and we use a quadratic cost function
for JitterTime, similar to [1]. The sensor samples the plant with the same period as the
control application and sends a message to the node that runs the control application. The
actuator receives a message when the control application produces its output. Fig. 2 shows
an example system model.

5 Constraint Programming

Constraint Programming (CP) is a declarative programming paradigm that has been widely
used to solve a variety of optimization problems such as scheduling, routing, and resource
allocations. With CP, a problem is modeled through a set of variables and a set of constraints.
Each variable has a finite set of values, called domain, that can be assigned to it. Constraints
restrict the variables’ domains by bounding them to a range of values and defining relations
between the domains of different variables. The constraint solver systematically performs
an exhaustive search by exploring all the possibilities of assigning different values to the
variables.

In our future work we will integrate JitterTime with our CP formulation to evaluate each
visited solution during the search w.r.t. its QoC. However, our approach in this paper is to
use the jitter as a proxy for the QoC [4]. Hence, we are looking for solutions such that the

M. Barzegaran, B. Zarrin, and P. Pop 3:5

Figure 2 Example system model. One control application with messages of 6 ms period on a
FCP-based architecture with a sensor, an actuator, two FNs and two switches. The sensor sends a
500 bytes message to ES3 where control output is being calculated and ES3 sends a message of 400
bytes when output is ready. All links have the speed of 100 Mbps. The routing and parameters of
streams are also depicted; coloring distinguishes the different streams.

network and stream constraints defined in Sect. 5.2, are satisfied and the jitter defined in
Sect. 5.3 are minimized. We record all the solutions visited that have the best cost function,
and after the search terminates we use JitterTime to determine their QoC.

In the following sections, we present a CP model for our problem, including the decision
variables, constraints, and the objective function. Additionally, we propose different search
strategies to improve the search speed.

5.1 CP Model
We define decision variables for the offsets and lengths of frames in our CP model, and we
bound them in Eq. (1).

∀si ∈ S,∀m ∈ [0, .., |si|),∀k ∈ [0, .., |rj |), rj = z(si), εv,w = u(rj , k) :

0 ≤ fk
i,m.φ ≤

si.t

εv,w.mt
fk

i,m.l = si.c

εv,w.s× εv,w.mt
(1)

5.2 Constraints
We model the network using five constraints that regulate traffic. A directed physical link
transmits one frame at a time, i.e., two frames can not share a physical link at any time,
which is modeled with the constraint in Eq. (2):

∀si, sj ∈ S, i 6= j,∀m ∈ [0, .., |si|),∀n ∈ [0, .., |sj |),
∀k ∈ [0, .., |ro|), ro = z(si),∀l ∈ [0, .., |rp|), rp = z(sj), εv,w = u(ro, k), εv,w = u(rp, l) :

(fk
i,m.φ+m× si.t

εv,w.mt
≥ f l

j,n.φ+ n× sj .t

εv,w.mt
+ f l

j,n.l)∨

(f l
j,n.φ+ n× sj .t

εv,w.mt
≥ fk

i,m.φ+m× si.t

εv,w.mt
+ fk

i,m.l). (2)

The constraint in Eq. (3) imposes that a stream propagates from the talker to the listener
through the ordered links determined in the mapped routing. It also imposes that the
frame can only be scheduled to be transmitted after it has completely received by the node

Fog- IoT 2020

3:6 QoC-Aware Scheduling of Communication in TSN

considering the network propagation delay. According to the 802.1AS clock synchronization
mechanism [9], the network precision which is the worst-case difference between the nodes
clock in the network, is defined and denoted with δ:

∀si ∈ S,∀m ∈ [0, .., |si|),∀k ∈ [0, .., (|rj | − 1)),
rj = z(si), εv,w = u(rj , k), εw,x = u(rj , (k + 1)) :
fk+1

i,m .φ× εw,x.mt ≥ (fk
i,m.φ+ fk

i,m.l)× εv,w.mt+ εv,w.d+ δ. (3)

We also isolate streams in different queues of switches to avoid displacement of frames.
The constraint in Eq. (4) imposes that either two frames are not received at the ingress port
of a switch at the same time or have different priorities, i.e, one frame is received after or
before the other one, or has different priority when they are received at the same time, which
enforces their order of transmission in the switch schedule, see [5] for more details:

∀si, sj ∈ S, i 6= j,∀m ∈ [0, .., |si|]),∀n ∈ [0, .., |sj |),
∀k ∈ [1, .., |ro|), ro = z(si),∀l ∈ [1, .., |rp|), rp = z(sj),
εv,w = u(ro, k), εa,b = u(rp, l), εx,v = u(ro, k − 1), εy,a = u(rp, l − 1) :
((fk

i,m.φ× εv,w.mt+m× si.t+ δ ≤ f l−1
j,n .φ× εy,a.mt+ n× sj .t+ εy,a.d)∨

(f l
j,n.φ× εv,w.mt+ n× sj .t+ δ ≤ fk−1

i,m .φ× εx,v.mt+m× si.t+ εx,v.d)) ∨ (si.p 6= sj .p).
(4)

The constraint in Eq. (5) imposes that a stream is received by its listener within its
deadline, i.e., the time interval between the scheduled transmission of a stream from its talker
and the reception of it by the listener is smaller than its deadline:

∀si ∈ S,∀m ∈ [0, .., |si|), rj = z(si), εa,b = u(rj , 0), εy,z = u(rj , (|rj | − 1)) :

f0
i,m.φ× εa,b.mt+ si.d ≥ εy,z.mt× (f (|rj |−1)

i,m .φ+ f
(|rj |−1)
i,m .l). (5)

We also define the constraints for the talkers and listeners in Eq. (6), which imposes that
the jitter of every instance of a stream should be within the defined value, which is denoted
with si.j for the stream si.

∀si ∈ S,∀m,n ∈ [0, .., |si|), rj = z(si), εa,b = u(rj , 0), εy,z = u(rj , (|rj | − 1)) :
|(f0

i,m.φ− f0
i,n.φ)× εa,b.mt+ (m− n)× si.t| ≤ si.j

|(f (|rj |−1)
i,m .φ− f (|rj |−1)

i,n .φ)× εy,z.mt+ (m− n)× si.t| ≤ si.j. (6)

5.3 Objective Function
The CP solver finds the first feasible solution that satisfies the presented constraints and
determines the values of the CP model variables. The CP solver optimizes the solution
concerning the defined objective function. We define an optimization objective to find a
solution which schedules streams such that streams have minimum jitter. Although the
constraint in Eq. 6 imposes that the jitter is bounded, we seek for a minimum-jitter solution.
The proposed optimization objective function Ω accumulates the sending and receiving jitter
for every stream, and defined in Eq. (7):

∀si ∈ S,∀m,n ∈ [0, .., |si|), rj = z(si), εa,b = u(rj , 0), εy,z = u(rj , (|rj | − 1)) :

Ω =
∑
|(f0

i,m.φ− f0
i,n.φ)× εa,b.mt+ (m− n)× si.t|

+ |(f (|rj |−1)
i,m .φ− f (|rj |−1)

i,n .φ)× εy,z.mt+ (m− n)× si.t| (7)

M. Barzegaran, B. Zarrin, and P. Pop 3:7

0 100 200 300 400 500 600 700 800 900 1000 1100 1200

[SW2 : SW1]

[SW2 : ES4]

[SW2 : ES2(Actuator)]

[SW2 : ES3]

[SW1 : ES3]

[SW1 : SW2]

Figure 3 Optimized GCL for the system in Fig. 2. Messages have the same color as the streams
in Fig. 2.

5.4 Search Strategies
In this work, we use Google OR-Tools [6] as a CP solver to implement the presented CP
model. This CP solver is quite flexible and comes with several extension mechanisms that
allow customizing and combining different search strategies such as systematic search, local
search, and meta-heuristics algorithms. In this paper, we have used two search strategies; a
Systematic, and a Meta-heuristic strategy.

The first strategy finds the optimal solution by systematically exploring all the possibility
of assigning different values to the decision variable. It requires to specify two procedures
for the search algorithm. The first is the order of selecting the variables for assignment.
The other procedure is the order of selecting the values from the domain of a variable for
assignment. Based on our parameter tuning experiments, we choose to use the random order
for both procedures (random-variable and random-value).

The second search strategy does not guarantee optimality. Instead, it aims at finding good
quality solutions in a reasonable time, and hence it is based on Tabu Search meta-heuristic
algorithm [2], which aims to avoid the search process being trapped in a local optimum
by increasing diversification and intensification of the search. We have implemented this
strategy by extending the OR Tools’ implementation of Tabu Search. For intensification, it
will keep certain variables bounded to certain values, and for diversification, we will forbid
some variables to take some values. We specify two sets of variables for keep-tenure and
forbid-tenure. The variables in the first set must keep their values in the next solution, while
the variables in the second set can not use the corresponding values. We also specify the
number of iterations or a certain amount of time to keep these variables in these sets.

We run these search strategies for solving the offset variables fk
i,m.φ as the primary

decision variables since they have a direct impact on our cost function. We solve the length
variables fk

i,m.l as a constraint satisfaction problem by using SolveOnce strategy of the solver
which finds the first feasible assignments for these variables.

6 Evaluation

We have evaluated our proposed CP model with several test cases. Our solution is implemented
in Java using Google OR-Tools [6] and was run on a computer with an i9 CPU at 3.6 Ghz
and 32 GB of RAM, with a time limit of 30 minutes to 5 hours, depending on the size of the
test case.

Let us consider the test case in Fig. 2. We schedule the traffic using the Systematic
and Meta-heuristic strategies from Sect. 5.4. Both strategies found the same best solution
depicted in Fig. 3 as Gantt chart, which in this case has zero jitter and all streams are
schedulable. JitterTime reports a QoC value of 1214 for both solutions. We also measured
the run-times of each search strategy, which are 3.67 s for the Systematic strategy and 162
ms for the Meta-heuristic strategy.

Fog- IoT 2020

3:8 QoC-Aware Scheduling of Communication in TSN

We have also evaluated our solution on progressively larger test cases. The results are
presented in Table 1, which shows the 5 additional test cases; Test case 5 is a realistic
automotive test case which consists of a TSN-based “fog nodes on wheels” implementation
of autonomous driving functions. In the table, the topology of the network is summarized in
columns 3 and 4, where we have the number of end-systems and switches, respectively. The
values in the column 5 are the maximum jitter for all streams. The values in columns 6 and
7 are the run-time of the solution for respectively Systematic and Meta-heuristic strategies.
As we can see, our CP-based approach is able to find schedulable solutions with zero jitter in
all cases. In addition, the Meta-heuristic solution scales well with the problem size, and has
been able to find the same the optimal solutions as the ones found by the Systematic search,
in a much shorter time.

However, the improvement in run-time depends on the test case: the search strategy has
a big impact on run-time of the solver and the proposed Meta-heuristic strategy improves
run-time of the addressed scheduling problem.

Table 1 Evaluation results for five test cases.

No. No. No. Max. Run-Time Run-time
of of of for for

Streams ESs SWs Jitter Systematic Meta-heuristic
1 10 5 5 0 14:12 min 15.89 s
2 8 5 2 0 2:23 min 3.59 s
3 20 15 15 0 24:44 min 32.2 s
4 20 15 15 0 26:56 min 39.9 s
5 27 20 20 0 42:43 min 2:41 min

7 Conclusions and Future Work

In this paper, we have addressed the problem of real-time communication scheduling on
TSN networks on an FCP, aiming at improving the control performance. We have used the
scheduled traffic class, which sends the messages based on Gate Control Lists. We have
proposed a constraint programming-based solution, modeling the problem constraints as well
as objective function for optimizing the network for control applications. The search uses
jitter as a “proxy” objective function for the control performance, which has been determined
using JitterTime for the best solutions found by the Google OR-Tools solver. As the results
show, employing a metaheuristic search in the solver, we can obtain good quality solutions
in a short time.

In our future work, we plan to (i) integrate JitterTime into the search process of the
CP solver, (ii) integrate task scheduling and message scheduling into a joint QoC-aware CP
formulation, and (iii) evaluate the CP approach on larger test cases.

References
1 M. Barzegran, A. Cervin, and P. Pop. Towards quality-of-control-aware scheduling of industrial

applications on fog computing platforms. In Workshop on Fog Computing and the IoT, 2019.
2 Edmund K Burke, Graham Kendall, et al. Search methodologies. Springer, 2005.
3 A. Cervin, D. Henriksson, B. Lincoln, J. Eker, and K.-E. Årzén. How does control timing

affect performance? analysis and simulation of timing using Jitterbug and TrueTime. IEEE
Control Systems Magazine, 23(3):16–30, June 2003.

M. Barzegaran, B. Zarrin, and P. Pop 3:9

4 A. Cervin, P. Pazzaglia, M. Barzegaran, and R. Mahfouzi. Using JitterTime to analyze
transient performance in adaptive and reconfigurable control systems. In IEEE International
Conference on Emerging Technologies and Factory Automation, pages 1025–1032, 2019.

5 Silviu S Craciunas, Ramon Serna Oliver, Martin Chmelík, and Wilfried Steiner. Scheduling
real-time communication in ieee 802.1 qbv time sensitive networks. In Proceedings of the 24th
International Conference on Real-Time Networks and Systems, pages 183–192, 2016.

6 Google. Google OR-Tools. https://developers.google.com/optimization, Accessed on
Jan 2020.

7 IEEE. Official Website of the 802.1 Time-Sensitive Networking Task Group, 2016 (accessed
December. 12, 2018). URL: http://www.ieee802.org/1/pages/tsn.html.

8 IEEE. 802.1Qbv—enhancments for scheduled traffic. https://www,ieee802.org/1/pages/
802.1bv.html, 2016 Draft 3.1.

9 IEEE. 802.1ASrev—timing and synchronization for time-sensitive applications. http://www.
ieee802.org/1/pages/802.1AS-rev.html, 2017.

10 Rouhollah Mahfouzi, Amir Aminifar, Soheil Samii, Ahmed Rezine, Petru Eles, and Zebo Peng.
Stability-aware integrated routing and scheduling for control applications in Ethernet networks.
In Design, Automation & Test in Europe Conference, pages 682–687, 2018.

11 Carla Mouradian, Diala Naboulsi, Sami Yangui, Roch H. Glitho, Monique J. Morrow, and
Paul A. Polakos. A Comprehensive Survey on Fog Computing: State-of-the-Art and Research
Challenges. IEEE Communications Surveys and Tutorials, 20(1):416–464, 2018.

12 P. Pop, M. L. Raagaard, M. Gutierrez, and W. Steiner. Enabling fog computing for industrial
automation through Time-Sensitive Networking (TSN). IEEE Communications Standards
Magazine, 2(2):55–61, 2018.

13 Paul Pop, Michael Lander Raagaard, Silviu S Craciunas, and Wilfried Steiner. Design
optimisation of cyber-physical distributed systems using IEEE Time-Sensitive Networks. IET
Cyber-Physical Systems: Theory & Applications, 1(1):86–94, 2016.

14 Zhi Wen Wang and Hong Tao Sun. Control and scheduling co-design of networked control
system: Overview and directions. In in Proceedings International Conference on Machine
Learning and Cybernetics, volume 3, pages 816–824, 2012.

Fog- IoT 2020

https://developers.google.com/optimization
http://www.ieee802.org/1/pages/tsn.html
https://www,ieee802.org/1/pages/802.1bv.html
https://www,ieee802.org/1/pages/802.1bv.html
http://www.ieee802.org/1/pages/802.1AS-rev.html
http://www.ieee802.org/1/pages/802.1AS-rev.html

	Introduction
	System Model
	Architecture Model
	Application Model
	Time-Sensitive Transmission in TSN

	Problem Formulation
	Control Performance
	Constraint Programming
	CP Model
	Constraints
	Objective Function
	Search Strategies

	Evaluation
	Conclusions and Future Work

