1,936 research outputs found

    Proximal Methods for Hierarchical Sparse Coding

    Get PDF
    Sparse coding consists in representing signals as sparse linear combinations of atoms selected from a dictionary. We consider an extension of this framework where the atoms are further assumed to be embedded in a tree. This is achieved using a recently introduced tree-structured sparse regularization norm, which has proven useful in several applications. This norm leads to regularized problems that are difficult to optimize, and we propose in this paper efficient algorithms for solving them. More precisely, we show that the proximal operator associated with this norm is computable exactly via a dual approach that can be viewed as the composition of elementary proximal operators. Our procedure has a complexity linear, or close to linear, in the number of atoms, and allows the use of accelerated gradient techniques to solve the tree-structured sparse approximation problem at the same computational cost as traditional ones using the L1-norm. Our method is efficient and scales gracefully to millions of variables, which we illustrate in two types of applications: first, we consider fixed hierarchical dictionaries of wavelets to denoise natural images. Then, we apply our optimization tools in the context of dictionary learning, where learned dictionary elements naturally organize in a prespecified arborescent structure, leading to a better performance in reconstruction of natural image patches. When applied to text documents, our method learns hierarchies of topics, thus providing a competitive alternative to probabilistic topic models

    Block-proximal methods with spatially adapted acceleration

    Full text link
    We study and develop (stochastic) primal--dual block-coordinate descent methods for convex problems based on the method due to Chambolle and Pock. Our methods have known convergence rates for the iterates and the ergodic gap: O(1/N2)O(1/N^2) if each block is strongly convex, O(1/N)O(1/N) if no convexity is present, and more generally a mixed rate O(1/N2)+O(1/N)O(1/N^2)+O(1/N) for strongly convex blocks, if only some blocks are strongly convex. Additional novelties of our methods include blockwise-adapted step lengths and acceleration, as well as the ability to update both the primal and dual variables randomly in blocks under a very light compatibility condition. In other words, these variants of our methods are doubly-stochastic. We test the proposed methods on various image processing problems, where we employ pixelwise-adapted acceleration

    Parallel extragradient-proximal methods for split equilibrium problems

    Get PDF
    In this paper, we introduce two parallel extragradient-proximal methods for solving split equilibrium problems. The algorithms combine the extragradient method, the proximal method and the hybrid (outer approximation) method. The weak and strong convergence theorems for iterative sequences generated by the algorithms are established under widely used assumptions for equilibrium bifunctions.Comment: 13 pages, submitte
    corecore