1,703 research outputs found

    Protein-RNA interactions: a structural analysis

    Get PDF
    A detailed computational analysis of 32 protein-RNA complexes is presented. A number of physical and chemical properties of the intermolecular interfaces are calculated and compared with those observed in protein-double-stranded DNA and protein-single-stranded DNA complexes. The interface properties of the protein-RNA complexes reveal the diverse nature of the binding sites. van der Waals contacts played a more prevalent role than hydrogen bond contacts, and preferential binding to guanine and uracil was observed. The positively charged residue, arginine, and the single aromatic residues, phenylalanine and tyrosine, all played key roles in the RNA binding sites. A comparison between protein-RNA and protein-DNA complexes showed that whilst base and backbone contacts (both hydrogen bonding and van der Waals) were observed with equal frequency in the protein-RNA complexes, backbone contacts were more dominant in the protein-DNA complexes. Although similar modes of secondary structure interactions have been observed in RNA and DNA binding proteins, the current analysis emphasises the differences that exist between the two types of nucleic acid binding protein at the atomic contact level

    Sequence-Based Prediction of RNA-Binding Residues in Proteins

    Get PDF
    Identifying individual residues in the interfaces of protein–RNA complexes is important for understanding the molecular determinants of protein–RNA recognition and has many potential applications. Recent technical advances have led to several high-throughput experimental methods for identifying partners in protein–RNA complexes, but determining RNA-binding residues in proteins is still expensive and time-consuming. This chapter focuses on available computational methods for identifying which amino acids in an RNA-binding protein participate directly in contacting RNA. Step-by-step protocols for using three different web-based servers to predict RNA-binding residues are described. In addition, currently available web servers and software tools for predicting RNA-binding sites, as well as databases that contain valuable information about known protein–RNA complexes, RNA-binding motifs in proteins, and protein-binding recognition sites in RNA are provided. We emphasize sequence-based methods that can reliably identify interfacial residues without the requirement for structural information regarding either the RNA-binding protein or its RNA partner

    Short, synthetic and selectively 13C-labeled RNA sequences for the NMR structure determination of protein-RNA complexes

    Get PDF
    We report an optimized synthesis of all canonical 2′-O-TOM protected ribonucleoside phosphoramidites and solid supports containing [13C5]-labeled ribose moieties, their sequence-specific introduction into very short RNA sequences and their use for the structure determination of two protein-RNA complexes. These specifically labeled sequences facilitate RNA resonance assignments and are essential to assign a high number of sugar-sugar and intermolecular NOEs, which ultimately improve the precision and accuracy of the resulting structures. This labeling strategy is particularly useful for the study of protein-RNA complexes with single-stranded RNA in solution, which is rapidly an increasingly relevant research area in biolog

    Protein-nucleic acids interactions: new ways of connecting structure, dynamics and function

    Get PDF
    No abstract available

    Short, synthetic and selectively 13C-labeled RNA sequences for the NMR structure determination of protein–RNA complexes

    Get PDF
    We report an optimized synthesis of all canonical 2′-O-TOM protected ribonucleoside phosphoramidites and solid supports containing [13C5]-labeled ribose moieties, their sequence-specific introduction into very short RNA sequences and their use for the structure determination of two protein–RNA complexes. These specifically labeled sequences facilitate RNA resonance assignments and are essential to assign a high number of sugar–sugar and intermolecular NOEs, which ultimately improve the precision and accuracy of the resulting structures. This labeling strategy is particularly useful for the study of protein–RNA complexes with single-stranded RNA in solution, which is rapidly an increasingly relevant research area in biology

    Template-Based Modeling of Protein-RNA Interactions

    Get PDF
    Protein-RNA complexes formed by specific recognition between RNA and RNA-binding proteins play an important role in biological processes. More than a thousand of such proteins in human are curated and many novel RNA-binding proteins are to be discovered. Due to limitations of experimental approaches, computational techniques are needed for characterization of protein-RNA interactions. Although much progress has been made, adequate methodologies reliably providing atomic resolution structural details are still lacking. Although protein-RNA free docking approaches proved to be useful, in general, the template-based approaches provide higher quality of predictions. Templates are key to building a high quality model. Sequence/structure relationships were studied based on a representative set of binary protein-RNA complexes from PDB. Several approaches were tested for pairwise target/template alignment. The analysis revealed a transition point between random and correct binding modes. The results showed that structural alignment is better than sequence alignment in identifying good templates, suitable for generating protein-RNA complexes close to the native structure, and outperforms free docking, successfully predicting complexes where the free docking fails, including cases of significant conformational change upon binding. A template-based protein-RNA interaction modeling protocol PRIME was developed and benchmarked on a representative set of complexes

    PRIDB: a protein–RNA interface database

    Get PDF
    The Protein–RNA Interface Database (PRIDB) is a comprehensive database of protein–RNA interfaces extracted from complexes in the Protein Data Bank (PDB). It is designed to facilitate detailed analyses of individual protein–RNA complexes and their interfaces, in addition to automated generation of user-defined data sets of protein–RNA interfaces for statistical analyses and machine learning applications. For any chosen PDB complex or list of complexes, PRIDB rapidly displays interfacial amino acids and ribonucleotides within the primary sequences of the interacting protein and RNA chains. PRIDB also identifies ProSite motifs in protein chains and FR3D motifs in RNA chains and provides links to these external databases, as well as to structure files in the PDB. An integrated JMol applet is provided for visualization of interacting atoms and residues in the context of the 3D complex structures. The current version of PRIDB contains structural information regarding 926 protein–RNA complexes available in the PDB (as of 10 October 2010). Atomic- and residue-level contact information for the entire data set can be downloaded in a simple machine-readable format. Also, several non-redundant benchmark data sets of protein–RNA complexes are provided. The PRIDB database is freely available online at http://bindr.gdcb.iastate.edu/PRIDB

    Identifying Interaction Sites in "Recalcitrant" Proteins: Predicted Protein and Rna Binding Sites in Rev Proteins of Hiv-1 and Eiav Agree with Experimental Data

    Get PDF
    Protein-protein and protein nucleic acid interactions are vitally important for a wide range of biological processes, including regulation of gene expression, protein synthesis, and replication and assembly of many viruses. We have developed machine learning approaches for predicting which amino acids of a protein participate in its interactions with other proteins and/or nucleic acids, using only the protein sequence as input. In this paper, we describe an application of classifiers trained on datasets of well-characterized protein-protein and protein-RNA complexes for which experimental structures are available. We apply these classifiers to the problem of predicting protein and RNA binding sites in the sequence of a clinically important protein for which the structure is not known: the regulatory protein Rev, essential for the replication of HIV-1 and other lentiviruses. We compare our predictions with published biochemical, genetic and partial structural information for HIV-1 and EIAV Rev and with our own published experimental mapping of RNA binding sites in EIAV Rev. The predicted and experimentally determined binding sites are in very good agreement. The ability to predict reliably the residues of a protein that directly contribute to specific binding events - without the requirement for structural information regarding either the protein or complexes in which it participates - can potentially generate new disease intervention strategies.Comment: Pacific Symposium on Biocomputing, Hawaii, In press, Accepted, 200

    PiRaNhA: A server for the computational prediction of RNA-binding residues in protein sequences

    Get PDF
    The PiRaNhA web server is a publicly available online resource that automatically predicts the location of RNA-binding residues (RBRs) in protein sequences. The goal of functional annotation of sequences in the field of RNA binding is to provide predictions of high accuracy that require only small numbers of targeted mutations for verification. The PiRaNhA server uses a support vector machine (SVM), with position-specific scoring matrices, residue interface propensity, predicted residue accessibility and residue hydrophobicity as features. The server allows the submission of up to 10 protein sequences, and the predictions for each sequence are provided on a web page and via email. The prediction results are provided in sequence format with predicted RBRs highlighted, in text format with the SVM threshold score indicated and as a graph which enables users to quickly identify those residues above any specific SVM threshold. The graph effectively enables the increase or decrease of the false positive rate. When tested on a non-redundant data set of 42 protein sequences not used in training, the PiRaNhA server achieved an accuracy of 85%, specificity of 90% and a Matthews correlation coefficient of 0.41 and outperformed other publicly available servers. The PiRaNhA prediction server is freely available at http://www.bioinformatics.sussex.ac.uk/PIRANHA. © The Author(s) 2010. Published by Oxford University Press

    RNABindR: a server for analyzing and predicting RNA-binding sites in proteins

    Get PDF
    Understanding interactions between proteins and RNA is key to deciphering the mechanisms of many important biological processes. Here we describe RNABindR, a web-based server that identifies and displays RNA-binding residues in known protein–RNA complexes and predicts RNA-binding residues in proteins of unknown structure. RNABindR uses a distance cutoff to identify which amino acids contact RNA in solved complex structures (from the Protein Data Bank) and provides a labeled amino acid sequence and a Jmol graphical viewer in which RNA-binding residues are displayed in the context of the three-dimensional structure. Alternatively, RNABindR can use a Naive Bayes classifier trained on a non-redundant set of protein–RNA complexes from the PDB to predict which amino acids in a protein sequence of unknown structure are most likely to bind RNA. RNABindR automatically displays ‘high specificity’ and ‘high sensitivity’ predictions of RNA-binding residues. RNABindR is freely available at http://bindr.gdcb.iastate.edu/RNABindR
    corecore