710 research outputs found

    Coherence of Proof-Net Categories

    Full text link
    The notion of proof-net category defined in this paper is closely related to graphs implicit in proof nets for the multiplicative fragment without constant propositions of linear logic. Analogous graphs occur in Kelly's and Mac Lane's coherence theorem for symmetric monoidal closed categories. A coherence theorem with respect to these graphs is proved for proof-net categories. Such a coherence theorem is also proved in the presence of arrows corresponding to the mix principle of linear logic. The notion of proof-net category catches the unit free fragment of the notion of star-autonomous category, a special kind of symmetric monoidal closed category.Comment: 40 pages, 1 figur

    Canonical Proof nets for Classical Logic

    Full text link
    Proof nets provide abstract counterparts to sequent proofs modulo rule permutations; the idea being that if two proofs have the same underlying proof-net, they are in essence the same proof. Providing a convincing proof-net counterpart to proofs in the classical sequent calculus is thus an important step in understanding classical sequent calculus proofs. By convincing, we mean that (a) there should be a canonical function from sequent proofs to proof nets, (b) it should be possible to check the correctness of a net in polynomial time, (c) every correct net should be obtainable from a sequent calculus proof, and (d) there should be a cut-elimination procedure which preserves correctness. Previous attempts to give proof-net-like objects for propositional classical logic have failed at least one of the above conditions. In [23], the author presented a calculus of proof nets (expansion nets) satisfying (a) and (b); the paper defined a sequent calculus corresponding to expansion nets but gave no explicit demonstration of (c). That sequent calculus, called LK\ast in this paper, is a novel one-sided sequent calculus with both additively and multiplicatively formulated disjunction rules. In this paper (a self-contained extended version of [23]), we give a full proof of (c) for expansion nets with respect to LK\ast, and in addition give a cut-elimination procedure internal to expansion nets - this makes expansion nets the first notion of proof-net for classical logic satisfying all four criteria.Comment: Accepted for publication in APAL (Special issue, Classical Logic and Computation

    A Coding Theoretic Study on MLL proof nets

    Full text link
    Coding theory is very useful for real world applications. A notable example is digital television. Basically, coding theory is to study a way of detecting and/or correcting data that may be true or false. Moreover coding theory is an area of mathematics, in which there is an interplay between many branches of mathematics, e.g., abstract algebra, combinatorics, discrete geometry, information theory, etc. In this paper we propose a novel approach for analyzing proof nets of Multiplicative Linear Logic (MLL) by coding theory. We define families of proof structures and introduce a metric space for each family. In each family, 1. an MLL proof net is a true code element; 2. a proof structure that is not an MLL proof net is a false (or corrupted) code element. The definition of our metrics reflects the duality of the multiplicative connectives elegantly. In this paper we show that in the framework one error-detecting is possible but one error-correcting not. Our proof of the impossibility of one error-correcting is interesting in the sense that a proof theoretical property is proved using a graph theoretical argument. In addition, we show that affine logic and MLL + MIX are not appropriate for this framework. That explains why MLL is better than such similar logics.Comment: minor modification

    Taylor expansion in linear logic is invertible

    Full text link
    Each Multiplicative Exponential Linear Logic (MELL) proof-net can be expanded into a differential net, which is its Taylor expansion. We prove that two different MELL proof-nets have two different Taylor expansions. As a corollary, we prove a completeness result for MELL: We show that the relational model is injective for MELL proof-nets, i.e. the equality between MELL proof-nets in the relational model is exactly axiomatized by cut-elimination

    Context Semantics, Linear Logic and Computational Complexity

    Full text link
    We show that context semantics can be fruitfully applied to the quantitative analysis of proof normalization in linear logic. In particular, context semantics lets us define the weight of a proof-net as a measure of its inherent complexity: it is both an upper bound to normalization time (modulo a polynomial overhead, independently on the reduction strategy) and a lower bound to the number of steps to normal form (for certain reduction strategies). Weights are then exploited in proving strong soundness theorems for various subsystems of linear logic, namely elementary linear logic, soft linear logic and light linear logic.Comment: 22 page

    Higher-order port-graph rewriting

    Full text link
    The biologically inspired framework of port-graphs has been successfully used to specify complex systems. It is the basis of the PORGY modelling tool. To facilitate the specification of proof normalisation procedures via graph rewriting, in this paper we add higher-order features to the original port-graph syntax, along with a generalised notion of graph morphism. We provide a matching algorithm which enables to implement higher-order port-graph rewriting in PORGY, thus one can visually study the dynamics of the systems modelled. We illustrate the expressive power of higher-order port-graphs with examples taken from proof-net reduction systems.Comment: In Proceedings LINEARITY 2012, arXiv:1211.348
    • …
    corecore