10,068 research outputs found
12th International Workshop on Termination (WST 2012) : WST 2012, February 19â23, 2012, Obergurgl, Austria / ed. by Georg Moser
This volume contains the proceedings of the 12th International Workshop on Termination (WST 2012), to be held February 19â23, 2012 in Obergurgl, Austria. The goal of the Workshop on Termination is to be a venue for presentation and discussion of all topics in and around termination. In this way, the workshop tries to bridge the gaps between different communities interested and active in research in and around termination. The 12th International Workshop on Termination in Obergurgl continues the successful workshops held in St. Andrews (1993), La Bresse (1995), Ede (1997), Dagstuhl (1999), Utrecht (2001), Valencia (2003), Aachen (2004), Seattle (2006), Paris (2007), Leipzig (2009), and Edinburgh (2010). The 12th International Workshop on Termination did welcome contributions on all aspects of termination and complexity analysis. Contributions from the imperative, constraint, functional, and logic programming communities, and papers investigating applications of complexity or termination (for example in program transformation or theorem proving) were particularly welcome. We did receive 18 submissions which all were accepted. Each paper was assigned two reviewers. In addition to these 18 contributed talks, WST 2012, hosts three invited talks by Alexander Krauss, Martin Hofmann, and Fausto Spoto
Polynomial Path Orders
This paper is concerned with the complexity analysis of constructor term
rewrite systems and its ramification in implicit computational complexity. We
introduce a path order with multiset status, the polynomial path order POP*,
that is applicable in two related, but distinct contexts. On the one hand POP*
induces polynomial innermost runtime complexity and hence may serve as a
syntactic, and fully automatable, method to analyse the innermost runtime
complexity of term rewrite systems. On the other hand POP* provides an
order-theoretic characterisation of the polytime computable functions: the
polytime computable functions are exactly the functions computable by an
orthogonal constructor TRS compatible with POP*.Comment: LMCS version. This article supersedes arXiv:1209.379
Modular Complexity Analysis for Term Rewriting
All current investigations to analyze the derivational complexity of term
rewrite systems are based on a single termination method, possibly preceded by
transformations. However, the exclusive use of direct criteria is problematic
due to their restricted power. To overcome this limitation the article
introduces a modular framework which allows to infer (polynomial) upper bounds
on the complexity of term rewrite systems by combining different criteria.
Since the fundamental idea is based on relative rewriting, we study how matrix
interpretations and match-bounds can be used and extended to measure complexity
for relative rewriting, respectively. The modular framework is proved strictly
more powerful than the conventional setting. Furthermore, the results have been
implemented and experiments show significant gains in power.Comment: 33 pages; Special issue of RTA 201
Synthesis of sup-interpretations: a survey
In this paper, we survey the complexity of distinct methods that allow the
programmer to synthesize a sup-interpretation, a function providing an upper-
bound on the size of the output values computed by a program. It consists in a
static space analysis tool without consideration of the time consumption.
Although clearly related, sup-interpretation is independent from termination
since it only provides an upper bound on the terminating computations. First,
we study some undecidable properties of sup-interpretations from a theoretical
point of view. Next, we fix term rewriting systems as our computational model
and we show that a sup-interpretation can be obtained through the use of a
well-known termination technique, the polynomial interpretations. The drawback
is that such a method only applies to total functions (strongly normalizing
programs). To overcome this problem we also study sup-interpretations through
the notion of quasi-interpretation. Quasi-interpretations also suffer from a
drawback that lies in the subterm property. This property drastically restricts
the shape of the considered functions. Again we overcome this problem by
introducing a new notion of interpretations mainly based on the dependency
pairs method. We study the decidability and complexity of the
sup-interpretation synthesis problem for all these three tools over sets of
polynomials. Finally, we take benefit of some previous works on termination and
runtime complexity to infer sup-interpretations.Comment: (2012
Recommended from our members
Automated verification of refinement laws
Demonic refinement algebras are variants of Kleene algebras. Introduced by von Wright as a light-weight variant of the refinement calculus, their intended semantics are positively disjunctive predicate transformers, and their calculus is entirely within first-order equational logic. So, for the first time, off-the-shelf automated theorem proving (ATP) becomes available for refinement proofs. We used ATP to verify a toolkit of basic refinement laws. Based on this toolkit, we then verified two classical complex refinement laws for action systems by ATP: a data refinement law and Back's atomicity refinement law. We also present a refinement law for infinite loops that has been discovered through automated analysis. Our proof experiments not only demonstrate that refinement can effectively be automated, they also compare eleven different ATP systems and suggest that program verification with variants of Kleene algebras yields interesting theorem proving benchmarks. Finally, we apply hypothesis learning techniques that seem indispensable for automating more complex proofs
- âŠ