938,442 research outputs found
From Cooperative Scans to Predictive Buffer Management
In analytical applications, database systems often need to sustain workloads
with multiple concurrent scans hitting the same table. The Cooperative Scans
(CScans) framework, which introduces an Active Buffer Manager (ABM) component
into the database architecture, has been the most effective and elaborate
response to this problem, and was initially developed in the X100 research
prototype. We now report on the the experiences of integrating Cooperative
Scans into its industrial-strength successor, the Vectorwise database product.
During this implementation we invented a simpler optimization of concurrent
scan buffer management, called Predictive Buffer Management (PBM). PBM is based
on the observation that in a workload with long-running scans, the buffer
manager has quite a bit of information on the workload in the immediate future,
such that an approximation of the ideal OPT algorithm becomes feasible. In the
evaluation on both synthetic benchmarks as well as a TPC-H throughput run we
compare the benefits of naive buffer management (LRU) versus CScans, PBM and
OPT; showing that PBM achieves benefits close to Cooperative Scans, while
incurring much lower architectural impact.Comment: VLDB201
Modelling indoor air carbon dioxide concentration using grey-box models
Predictive control is the strategy that has the greatest reported benefits when it is implemented in a building energy management system. Predictive control requires low-order models to assess different scenarios and determine which strategy should be implemented to achieve a good compromise between comfort, energy consumption and energy cost. Usually, a deterministic approach is used to create low-order models to estimate the indoor CO2 concentration using the differential equation of the tracer-gas mass balance. However, the use of stochastic differential equations based on the tracer-gas mass balance is not common. The objective of this paper is to assess the potential of creating predictive models for a specific room using for the first time a stochastic grey-box modelling approach to estimate future CO2 concentrations. First of all, a set of stochastic differential equations are defined. Then, the model parameters are estimated using a maximum likelihood method. Different models are defined, and tested using a set of statistical methods. The approach used combines physical knowledge and information embedded in the monitored data to identify a suitable parametrization for a simple model that is more accurate than commonly used deterministic approaches. As a consequence, predictive control can be easily implemented in energy management systems.Peer ReviewedPostprint (author's final draft
The Comparison Study of Short-Term Prediction Methods to Enhance the Model Predictive Controller Applied to Microgrid Energy Management
Electricity load forecasting, optimal power system operation and energy management play key roles that can bring significant operational advantages to microgrids. This paper studies how methods based on time series and neural networks can be used to predict energy demand and production, allowing them to be combined with model predictive control. Comparisons of different prediction methods and different optimum energy distribution scenarios are provided, permitting us to determine when short-term energy prediction models should be used. The proposed prediction models in addition to the model predictive control strategy appear as a promising solution to energy management in microgrids. The controller has the task of performing the management of electricity purchase and sale to the power grid, maximizing the use of renewable energy sources and managing the use of the energy storage system. Simulations were performed with different weather conditions of solar irradiation. The obtained results are encouraging for future practical implementation
Mobility Prediction for Handover Management in Cellular Networks with Control/Data Separation
In research community, a new radio access network architecture with a logical separation between control plane (CP) and data plane (DP) has been proposed for future cellular systems. It aims to overcome limitations of the conventional architecture by providing high data rate services under the umbrella of a coverage layer in a dual connection mode. This configuration could provide significant savings in signalling overhead. In particular, mobility robustness with minimal handover (HO) signalling is considered as one of the most promising benefits of this architecture. However, the DP mobility remains an issue that needs to be investigated. We consider predictive DP HO management as a solution that could minimise the out-of-band signalling related to the HO procedure. Thus we propose a mobility prediction scheme based on Markov Chains. The developed model predicts the user's trajectory in terms of a HO sequence in order to minimise the interruption time and the associated signalling when the HO is triggered. Depending on the prediction accuracy, numerical results show that the predictive HO management strategy could significantly reduce the signalling cost as compared with the conventional non-predictive mechanism
A SCADA System for Energy Management in Intelligent Buildings
This paper develops an energy management platform for intelligent buildings using a SCADA system (Supervisory Control And Data Acquisition). This SCADA system integrates different types of information coming from the several technologies present in modern buildings (control of ventilation, temperature, illumination, etc.).
The developed control strategy implements an hierarchical cascade controller where inner loops are performed by local PLCs (Programmable Logic Controller), and the outer loop is managed by a centralized SCADA system, which interacts with the entire local PLC network.
In this paper a Predictive Controller is implemented above the centralized SCADA platform. Tests applied to the control of temperature and luminosity in huge-area rooms are presented. The developed Predictive Controller optimizes the satisfaction of user explicit preferences coming from several distributed user-interfaces, subjected to the overall constraints of energy waste minimization.
In order to run the Predictive Controller with the SCADA platform a communication channel was developed to allow communication between the SCADA system and the MATLAB application where the Predictive Controller runs
A Holistic Approach to Log Data Analysis in High-Performance Computing Systems: The Case of IBM Blue Gene/Q
The complexity and cost of managing high-performance computing
infrastructures are on the rise. Automating management and repair through
predictive models to minimize human interventions is an attempt to increase
system availability and contain these costs. Building predictive models that
are accurate enough to be useful in automatic management cannot be based on
restricted log data from subsystems but requires a holistic approach to data
analysis from disparate sources. Here we provide a detailed multi-scale
characterization study based on four datasets reporting power consumption,
temperature, workload, and hardware/software events for an IBM Blue Gene/Q
installation. We show that the system runs a rich parallel workload, with low
correlation among its components in terms of temperature and power, but higher
correlation in terms of events. As expected, power and temperature correlate
strongly, while events display negative correlations with load and power. Power
and workload show moderate correlations, and only at the scale of components.
The aim of the study is a systematic, integrated characterization of the
computing infrastructure and discovery of correlation sources and levels to
serve as basis for future predictive modeling efforts.Comment: 12 pages, 7 Figure
What Types of Predictive Analytics are Being Used in Talent Management Organizations?
[Excerpt] Talent management organizations are increasingly deriving insights from data to make better decisions. Their use of data analytics is advancing from descriptive to predictive and prescriptive analytics. Descriptive analytics is the most basic form, providing the hindsight view of what happened and laying the foundation for turning data into information. More advanced uses are predictive (advanced forecasts and the ability to model future results) and prescriptive (“the top-tier of analytics that leverage machine learning techniques … to both interpret data and recommend actions”) analytics (1). Appendix A illustrates these differences. This report summarizes our most relevant findings about how both academic researchers and HR practitioners are successfully using data analytics to inform decision-making in workforce issues, with a focus on executive assessment and selection
Introducing a Novel Minimum Accuracy Concept for Predictive Mobility Management Schemes
In this paper, an analytical model for the minimum required accuracy for predictive methods is derived in terms of both handover (HO) delay and HO signaling cost. After that, the total HO delay and signaling costs are derived for the worst-case scenario (when the predictive process has the same performance as the conventional one), and simulations are conducted using a cellular environment to reveal the importance of the proposed minimum accuracy framework. In addition to this, three different predictors; Markov Chains, Artificial Neural Network (ANN) and an Improved ANN (IANN) are implemented and compared. The results indicate that under certain circumstances, the predictors can occasionally fall below the applicable level. Therefore, the proposed concept of minimum accuracy plays a vital role in determining this corresponding threshold
- …
