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Abstract 17 

Predictive control is the strategy that has the greatest reported benefits when it is implemented 18 

in a building energy management system. Predictive control requires low-order models to 19 

assess different scenarios and determine which strategy should be implemented to achieve a 20 

good compromise between comfort, energy consumption and energy cost. Usually, a 21 

deterministic approach is used to create low-order models to estimate the indoor CO2 22 

concentration using the differential equation of the tracer-gas mass balance. However, the use 23 

of stochastic differential equations based on the tracer-gas mass balance is not common. The 24 

objective of this paper is to assess the potential of creating predictive models for a specific 25 

room using for the first time a stochastic grey-box modelling approach to estimate future CO2 26 

concentrations. First of all, a set of stochastic differential equations are defined. Then, the 27 

model parameters are estimated using a maximum likelihood method. Different models are 28 

defined, and tested using a set of statistical methods. The approach used combines physical 29 

knowledge and information embedded in the monitored data to identify a suitable 30 

parametrization for a simple model that is more accurate than commonly used deterministic 31 

approaches. As a consequence, predictive control can be easily implemented in energy 32 

management systems. 33 

 34 

Keywords: indoor air quality, ventilation, simulation, stochastic methods, CO2 prediction, 35 

low-order model 36 

 37 

 38 

 39 

2 
 



1 Introduction 40 

In Europe, buildings consume more energy than the industry and transportation sectors [1]. 41 

They are responsible for 40% of energy consumption and 36% of CO2 emissions [2]. Recent 42 

EU directives have focused on reducing operational buildings’ energy consumption [3], as 43 

80–90% of energy consumption during their life cycle is produced during the operation stage 44 

[4–6]. 45 

Half of a building’s energy consumption during the operation stage is due to heating, 46 

ventilation, and air-conditioning (HVAC) systems [7,8]. Thus, there is a great interest in 47 

developing technologies and operational strategies to improve the efficiency of these systems. 48 

Building energy management systems (BEMS) play an important role in this sense, because 49 

they can be used to apply advanced control strategies in buildings, to optimise HVAC 50 

systems. 51 

Recent new approaches to optimise ventilation systems are demand-controlled [9–11]. This 52 

means that the ventilation rate varies depending on building occupation. This approach 53 

produces more savings in buildings where the occupancy is highly variable, such as 54 

institutional buildings or restaurants. 55 

Generally, BEMS are rule-based. This means that the control approach is reactive [12], and 56 

future scenarios cannot be evaluated. As a consequence, BEMS cannot decide on the best 57 

strategy to ventilate a room or a building according to a set of indoor air quality and energy 58 

savings priorities. If predictive control is included in BEMS, the optimal control policy can be 59 

determined by minimizing a cost function [13]. In this way, more domains (i.e. cost, energy 60 

efficiency or indoor air quality) can be used to calculate the optimal strategy for the HVAC 61 

operation. 62 

A considerable amount of research has been carried out to develop models for use in adaptive 63 

and predictive control [10,14–18]. However, most of the efforts are focused on the thermal 64 
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dynamics of the modelled systems and subsystems [10]. Little effort has been made in the 65 

field of predicting indoor air CO2 concentration levels, and there is a lack of simple 66 

simulation tools and low-order state space models for predicting room CO2 concentrations 67 

[19]. 68 

Usually, a deterministic approach is used to develop simple, low-order state space models for 69 

predicting room CO2 concentrations [10] or calculating ventilation flow rates [20–25]. 70 

However, very few studies in the field of indoor air CO2 concentration address statistical 71 

approaches. This research presents the results of using the grey-box modelling method to 72 

estimate the indoor air CO2 concentration in a single test room. There are two main 73 

differences between grey-box modelling and the deterministic approach. The deterministic 74 

approach only uses knowledge about physics, whilst the grey-box approach combines physics 75 

with monitored data. Another difference is that the framework of the first approach is 76 

deterministic, and the grey-box framework is stochastic. As a consequence, statistical 77 

methods can be used to obtain suitable parametrization [26]. 78 

This paper is structured as follows. Section 2 introduces the grey-box modelling concept. 79 

Section 3 describes the application of the theoretical method to a case study. Section 4 80 

presents and discusses the results. Finally, Section 5 contains the conclusions. 81 

2 Grey-box modelling 82 

A grey-box model is established using a combination of physical knowledge and information 83 

embedded in the monitored data [27]. Grey-box models are comprised of a deterministic 84 

function and a stochastic part that represents a continuous-time stochastic differential 85 

equation for the physical description of a system [28]. Finally, a discrete-time observation of 86 

the underlying physical system is needed to estimate the parameters. The combination of 87 

physical and experimental data can be used to identify suitable model parameterization [26]. 88 
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The first step in grey modelling is to formulate a system of ordinary differential equations that 89 

represent well-known physical relationships: 90 

𝑑𝑑𝑋𝑋𝑡𝑡 = 𝑓𝑓(𝑋𝑋𝑡𝑡,𝑈𝑈𝑡𝑡,𝜃𝜃, 𝑡𝑡)𝑑𝑑𝑡𝑡           (Equation 1) 91 

where 𝑋𝑋𝑡𝑡 is a vector of system states, 𝑈𝑈𝑡𝑡 is a vector containing experimental data, and 𝜃𝜃 is the 92 

vector of parameters that should be identified. To introduce variations that are not described 93 

by the deterministic model (i.e. noisy input to the system), a stochastic term is included in 94 

Equation 1 to yield the following system of a stochastic differential equation 95 

𝑑𝑑𝑋𝑋𝑡𝑡 = 𝑓𝑓(𝑋𝑋𝑡𝑡,𝑈𝑈𝑡𝑡,𝜃𝜃, 𝑡𝑡)𝑑𝑑𝑡𝑡 + 𝐺𝐺(𝜃𝜃, 𝑡𝑡)𝑑𝑑𝑤𝑤𝑡𝑡         (Equation 2) 96 

where 𝑊𝑊𝑡𝑡 is a Wiener process, and 𝐺𝐺(𝜃𝜃, 𝑡𝑡) is the diffusion term in the process. 97 

Finally, the monitored output of the system 𝑌𝑌𝑡𝑡 is used to complete the state-space 98 

representation. 99 

𝑌𝑌 𝑡𝑡𝑘𝑘 = ℎ(𝑋𝑋𝑡𝑡,𝑈𝑈𝑡𝑡,𝜃𝜃, 𝑡𝑡) + 𝑒𝑒𝑡𝑡        (Equation 3) 100 

where function ℎ(𝑋𝑋𝑡𝑡,𝑈𝑈𝑡𝑡,𝜃𝜃, 𝑡𝑡) represents the relationship between the state variables and the 101 

measurements, and 𝑒𝑒𝑡𝑡 is a vector that describes the noise from the measurements. This noise 102 

is assumed to be Gaussian distributed. 103 

In order to estimate 𝜃𝜃 in the continuous-time model, the maximum likelihood method is 104 

generally used in the literature [26–28]. 105 

Finally, the system of ordinary differential equations with the estimated parameters is used to 106 

carry out the simulation. 107 

Grey-box modelling has been used successfully in the building sector to model the thermal 108 

energy demand of a building [26,27,29–32]. Other studies used grey-box modelling for 109 

district simulations [33]. 110 

Due to the minimal computational effort required by grey-box modelling and its accuracy, it 111 

is suitable for implementation in building energy management systems, for predictive control 112 

[31]. 113 
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 114 

Figure 1. Grey-box modelling approach 115 

3 Methodology 116 

This section presents the methodology used to study the suitability of grey-box modelling to 117 

determine the CO2 concentration in a single room. 118 

3.1 Data collection 119 

The room was an office in TR5, an academic building on the Terrassa Campus of the 120 

Universitat Politècnica de Catalunya (UPC). The room’s surface area was 31.16 m2 and its 121 

volume was 95 m3. The maximum occupation of the room was six people, because there were 122 

six workstations. However, the maximum occupation reached during the experimentation was 123 

three people. The room had one window and one door providing access from the corridor. 124 

The window measured 1.40 m long and 1.70 m high, and was positioned 1.25 m above the 125 

floor. The room was naturally ventilated via a ventilation grill in the door. The ventilation 126 

𝑑𝑑𝑋𝑋𝑡𝑡 = 𝑓𝑓(𝑋𝑋𝑡𝑡 ,𝑈𝑈𝑡𝑡 ,𝜃𝜃, 𝑡𝑡)𝑑𝑑𝑡𝑡 
Ordinary differential equation 

𝑑𝑑𝑋𝑋𝑡𝑡 = 𝑓𝑓(𝑋𝑋𝑡𝑡 ,𝑈𝑈𝑡𝑡 ,𝜃𝜃, 𝑡𝑡)𝑑𝑑𝑡𝑡 + 𝐺𝐺(𝜃𝜃, 𝑡𝑡)𝑑𝑑𝑤𝑤𝑡𝑡 
𝑌𝑌 𝑡𝑡𝑘𝑘 = ℎ(𝑋𝑋𝑡𝑡 ,𝑈𝑈𝑡𝑡 ,𝜃𝜃, 𝑡𝑡) + 𝑒𝑒𝑡𝑡 

Stochastic differential equation 

Determine the parameters to 
estimate from θ vector 

Monitored 
data 

Estimate unknown parameters 
from θ vector 

Maximum likelihood method 

𝑑𝑑𝑋𝑋𝑡𝑡 = 𝑓𝑓(𝑋𝑋𝑡𝑡 ,𝑈𝑈𝑡𝑡 ,𝜃𝜃, 𝑡𝑡)𝑑𝑑𝑡𝑡 

Simulation using the ordinary 
differential equation with the 
estimated parameters from θ 

vector 
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grill was rectangular and measured 0.40 m long and 0.20 m high, and was positioned 0.10 m 127 

above the floor. 128 

 129 

Figure 2. Plan view showing the positioning of sensors and objects inside the room (all 130 

measurements are in meters) 131 

The CO2 concentration in the room and corridor (Cint and Cven) was monitored with an 132 

Advanticsys IAQM-THCO2 sensor that has a range from 0 to 3,000 ppm, a resolution of 1 133 

ppm, and an accuracy of ±2% of full-scale output. The sensor is calibrated by the 134 

manufacturer and is configured by the manufacturer to record an instantaneous value every 15 135 

minutes. Both sensors were located 3.00 m above the floor, under the ceiling. 136 

The CO2 concentration in a room with people breathing is not homogenous [10,34-36]. 137 

However, a representative measurements of CO2 concentration can be effectively done in the 138 

centre of the room [36]. For this reason, the room sensor was located in the centre of the 139 

room. 140 
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An occupancy sheet was used to determine the room occupation. Each occupant noted on the 141 

sheet when they entered and left the room. The occupancy sheet was transformed into an 142 

occupation signal using the mean occupancy for each quarter of an hour.  143 

Data were collected over four days in May 2016. Figure 3 presents the data set used in this 144 

research, and Table 1 presents the indoor and outdoor air parameters during the 145 

measurements. 146 

 147 

 148 

Figure 3. Data set. From the top, the first plot shows the CO2 concentration observed inside 149 

the room, the second shows the CO2 concentration observed in the corridor, and the last plot 150 

presents the occupancy of the room.  151 
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Table 1. Measurement conditions 152 

Location Parameter Units Value 

Corridor air parameters Average temperature ºC 23.5 

 Average relative humidity % 49 

Room air parameters Average temperature ºC 23.1 

 Average relative humidity % 51 

Outdoor air parameters Average temperature ºC 14.7 

 Average relative humidity % 82 

 Average atmospheric pressure hPa 1006.8 

 Average wind speed m/s 2.1 

 CO2 concentration ppm 372 

 153 

3.2 Modelling process 154 

In this paper, the deterministic function is based on the principal of mass balance in a 155 

designated volume (Vr) [20,22,37,38]. The change in CO2 concentration (Cint) in the room is 156 

expressed as: 157 

𝑑𝑑𝑑𝑑int
𝑑𝑑𝑡𝑡

𝑉𝑉𝑟𝑟 = (𝐶𝐶ven − 𝐶𝐶int) · 𝑄𝑄ven + 𝐺𝐺𝑑𝑑𝐶𝐶2         (Equation 4) 158 

where Vr is the volume of air in the assessed room, 𝐶𝐶ven is the CO2 concentration of fresh air, 159 

𝐶𝐶int is the CO2 concentration in the room, 𝑄𝑄ven is the ventilation rate, and 𝐺𝐺𝑑𝑑𝐶𝐶2 is the CO2 160 

generated by the occupants. 161 

In this case, 𝐶𝐶ven is assumed to be equal to the corridor’s CO2 because the room is ventilated 162 

by means of a grill in the door. The 𝐺𝐺𝑑𝑑𝐶𝐶2 is calculated using the following equation: 163 

𝐺𝐺𝑑𝑑𝐶𝐶2 = 𝐾𝐾occ ∙ 𝑃𝑃          (Equation 5) 164 

where 𝐾𝐾occ is the CO2 emission rate per occupant, and 𝑃𝑃 is the occupancy of the room. To 165 

complete the stochastic differential equation a stochastic term is added. 166 
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𝑑𝑑𝐶𝐶int = 𝑄𝑄ven
𝑉𝑉r

(𝐶𝐶ven − 𝐶𝐶int) · 𝑑𝑑𝑡𝑡 + 𝐾𝐾occ∙𝑃𝑃
𝑉𝑉r

· 𝑑𝑑𝑡𝑡 + 𝜎𝜎 · 𝑑𝑑𝑤𝑤        (Equation 6) 167 

where 𝑑𝑑𝑤𝑤 is the Wiener process, and 𝜎𝜎 is the incremental variance of the Wiener process.  168 

Finally, the monitored output of the system is defined in this paper by the following discrete 169 

time equation: 170 

𝑌𝑌 𝑡𝑡𝑘𝑘 = 𝐶𝐶𝑖𝑖𝑖𝑖𝑡𝑡, 𝑡𝑡𝑘𝑘 + 𝑒𝑒𝑘𝑘         (Equation 7) 171 

where 𝐶𝐶𝑖𝑖𝑖𝑖𝑡𝑡, 𝑡𝑡𝑘𝑘 is the measured interior CO2 concentration of the room at time  𝑡𝑡𝑘𝑘, and 𝑒𝑒𝑘𝑘 is the 172 

white noise process describing the measurements’ noise. 173 

Equation 6 assumes four hypotheses: i) CO2 is chemically stable and inert, and there is no 174 

absorption process that can reduce the CO2 concentration; ii) walls, ceilings and furniture do 175 

not absorb CO2; iii) the room has a perfectly mixed condition; iv) the room has a constant 176 

ventilation air flow. 177 

This paper presents 4 different models to simulate the CO2 concentration inside a room. The 178 

characteristics of these models are summarized in Table 2. 179 

 180 
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Table 2. Grey-box models used 181 

Model State space representation Observation Input Estimated parameters 

M1 
𝑑𝑑𝐶𝐶int =

𝑄𝑄ven
95

(372 − 𝐶𝐶int) · 𝑑𝑑𝑡𝑡 +
33,800 ∙ 𝑃𝑃

95
· 𝑑𝑑𝑡𝑡 + 𝜎𝜎 · 𝑑𝑑𝑤𝑤 

𝑌𝑌 𝑡𝑡𝑘𝑘 = 𝐶𝐶int, 𝑡𝑡𝑘𝑘 + 𝑒𝑒𝑘𝑘 

Cint P Cint, Qven, σ, ek 

M2 
𝑑𝑑𝐶𝐶int =

𝑄𝑄ven
95

(372 − 𝐶𝐶int) · 𝑑𝑑𝑡𝑡 +
𝐾𝐾occ ∙ 𝑃𝑃

95
· 𝑑𝑑𝑡𝑡 + 𝜎𝜎 · 𝑑𝑑𝑤𝑤 

𝑌𝑌 𝑡𝑡𝑘𝑘 = 𝐶𝐶𝑖𝑖𝑖𝑖𝑡𝑡, 𝑡𝑡𝑘𝑘 + 𝑒𝑒𝑘𝑘 

Cint P Cint, Qven, Kocc, σ, ek 

M3 
𝑑𝑑𝐶𝐶int =

𝑄𝑄ven
95

(𝐶𝐶ven − 𝐶𝐶int) · 𝑑𝑑𝑡𝑡 +
𝐾𝐾occ ∙ 𝑃𝑃

95
· 𝑑𝑑𝑡𝑡 + 𝜎𝜎 · 𝑑𝑑𝑤𝑤 

𝑌𝑌 𝑡𝑡𝑘𝑘 = 𝐶𝐶int, 𝑡𝑡𝑘𝑘 + 𝑒𝑒𝑘𝑘 

Cint P, Cven Cint, Qven, Kocc, σ, ek 

M4 
𝑑𝑑𝐶𝐶int =

𝑄𝑄ven
95

(𝐶𝐶ven − 𝐶𝐶int) · 𝑑𝑑𝑡𝑡 +
𝑄𝑄inf
95

(372 − 𝐶𝐶int) · 𝑑𝑑𝑡𝑡 +
𝐾𝐾occ ∙ 𝑃𝑃

95
· 𝑑𝑑𝑡𝑡 + 𝜎𝜎 · 𝑑𝑑𝑤𝑤 

𝑌𝑌 𝑡𝑡𝑘𝑘 = 𝐶𝐶int, 𝑡𝑡𝑘𝑘 + 𝑒𝑒𝑘𝑘 

Cint P, Cven Cint, Qven, Qinf, Kocc, σ, ek 

 182 

 183 

 184 
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The first model (M1) is used to estimate the existing ventilation in the room. The only input in 185 

the model is occupancy. The rest of the parameters are constant values. The CO2 186 

concentration of the supply air (Cven) used is 372 ppm. This value is the average reading of an 187 

external CO2 sensor located outside the building. It is similar to other values obtained in other 188 

studies [39]. The human emission rate of CO2 for an adult seated, reading or writing is 32,500 189 

mg/h (16.5 L/h) for a woman and 36,600 mg/h (18.6 L/h) for a man [22]. Usually, the room 190 

used to carry out the experiments is occupied by two women and one man. The value used in 191 

this research for the human emission rate of CO2 is 33,900 mg/h (17.3 L/h), which is the 192 

weighted average of the aforementioned values. 193 

The difference between M1 and the second model (M2) is that the human emission rate of 194 

CO2 is estimated instead of a fixed rate. Model 3 (M3) added the measured CO2 concentration 195 

of the supply air, the rest of the parameters remained as in M2. 196 

Finally, model 4 (M4) incorporates the ventilation due to window infiltrations (Qinf). Equation 197 

6 should be modified to consider this change. 198 

𝑑𝑑𝐶𝐶int = 𝑄𝑄ven
𝑉𝑉r

(𝐶𝐶ven − 𝐶𝐶int) · 𝑑𝑑𝑡𝑡 + 𝑄𝑄inf
𝑉𝑉r

(𝐶𝐶inf − 𝐶𝐶int) · 𝑑𝑑𝑡𝑡 + 𝐾𝐾occ∙𝑃𝑃
𝑉𝑉r

· 𝑑𝑑𝑡𝑡 + 𝜎𝜎 · 𝑑𝑑𝑤𝑤 (Equation 8) 199 

The parameters of the assessed grey-box models are estimated using the CTSM-R Version 200 

1.0.0 package for an R environment. This package uses the maximum likelihood and Kalman 201 

filtering for the estimations [40]. A 2.50-GHz Intel Core i7 personal computer was used to 202 

carry out the estimations. 203 

3.3 Model validation 204 

This paper proposes a set of models to estimate CO2 concentrations in indoor spaces, based 205 

partially on the physical characteristics of the system. Consequently, the first step in the 206 

model validation process is to check whether the estimated parameters are feasible in terms of 207 

the physics of the system [27–30]. The estimated parameters are compared with the literature 208 

and the ASHRAE standard. 209 
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Then, using all the data set, a set of statistical tests are used to determine whether the 210 

estimated parameter values describe the dynamics of the system. The statistical tests and the 211 

model validation process are based on previous studies [27–29]. 212 

The first statistical test is the assessment of parameter significance. The probability value of 213 

the parameters should be less than 0.05, otherwise the parameter is insignificant [40]. Then, 214 

the derivative of the objective function compared to the particular initial state or parameter is 215 

assessed. If the values that are obtained are not close to zero, the solution may be a local 216 

optimum, but not the true optimum [41]. Subsequently, the derivative of the penalty function 217 

with respect to the particular initial state or parameters is assessed. If this value is significant 218 

compared to the derivative of the objective function with respect to the particular initial state 219 

or parameter, the particular initial state or parameter may be close to one of its limits. Then, 220 

the estimation should be repeated with new limits [40]. The correlation matrix of the 221 

parameter estimates is also calculated to ensure that off-diagonal values are far from 1 or -1. 222 

Values on the off-diagonal that are near to 1 or -1 indicate that the model is over-223 

parametrized. Then, the elimination of some model parameters should be taken into 224 

consideration [40]. 225 

The assumption of white noise residuals is assessed with the autocorrelation function and the 226 

cumulated periodogram [27,28]. Finally, the root mean square error deviation is used to assess 227 

whether the calculated model can predict the system with reasonable accuracy. All the 228 

aforementioned statistical tests are provided by the CTSM-R package. 229 

4 Results and discussion 230 

All the estimated parameters of all the models reported reasonable values. The estimated 231 

ventilation flows ranged between 20.13 m3/h and 92.16 m3/h. These values are lower than 232 

established by the standards. This is an expected result, because the room only has natural 233 

ventilation through the corridor. In addition, the CO2 concentration reaches and surpasses 234 

13 
 



1000 ppm during working hours. The RMSE of the assessed models ranges between 41.09 235 

and 370.67 ppm. However, only one model can be considered statistically relevant. 236 

The estimation of the ventilation flow rate obtained with M1 is reasonable (24.40 m3/h). The 237 

p-value of the t-test is below 0.05 in all estimated parameters, except e. However, this 238 

parameter is not important for the resultant model and this value can be accepted. The 239 

derivative of the objective function with respect to each parameter is close to 0 and the 240 

derivative function with respect to each parameter is not significant compared to dF/dPar 241 

(Table 3 and Table 4). The autocorrelation plot shows that the residues are not random, 242 

because most of the autocorrelations are outside of the 95% confidence bands. The values of 243 

the cumulated periodogram are outside of the 95% confidence bands (Figure 4). As a 244 

consequence, is not possible to affirm that the residuals obtained can be regarded as white 245 

noise. The model follows the trend, however it overestimates the peaks and underestimates 246 

the lower values. The RMSE is 370.67 ppm, the highest of the four models. According to the 247 

results, this model cannot be considered useful to simulate the CO2 inside the room.  248 
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Table 3. Statistical tests for M1 249 

Parameter Estimation Standard error Pr(>|t|) dF/dPar dPen/dPar 

Cint 393 45 0.000 1.9346E-05 1.9346E-05 

Qvent 24.40 0.18 0.000 5.5770E-03 5.5770E-03 

𝜎𝜎 96.54 0.03 0.000 -4.9756E-06 1.1645E-03 

e 0.00 49.23 8.200 1.1645E-03 -4.9756E-06 

 250 

Table 4. Correlation coefficients for M1 251 

 Cint Qvent E 

Qvent 0.01   

e -0.02 -0.71  

𝜎𝜎 -0.04 -0.06 0.17 

 252 

15 
 



 253 

Figure 4. On the upper left, the residuals plot for M1 is presented; on the bottom left, the 254 

measured data compared to the simulated data for M1 is plotted. On the top right, the 255 

autocorrelation function (ACF) for the residuals of M1 is plotted, and on the bottom right the 256 

cumulated periodogram for M1 is presented. 257 

M2 reported similar results to M1. The statistical parameters were all inside the acceptable 258 

range (Table 5 and Table 6), but the autocorrelation function and the cumulated periodogram 259 

16 
 



were out of the 95% confidence bands (Figure 5). The root mean square error of this model 260 

was 156.34 ppm. The human emission rate of CO2 estimated by the model is 62% lower than 261 

that established in the literature. However, this result cannot be taken into account, because 262 

the results of statistical tests recommend discarding this model. 263 

 264 

Table 5. Statistical tests for M2 265 

Parameter Estimation Standard error Pr(>|t|) dF/dPar dPen/dPar 

Cint 393 16 0.000 -5.9627E-06 0.0000E+00 

Qvent 92.16 0.45 0.000 -5.8693E-06 0.0000E+00 

Kocc 12,862 370 0.000 2.6688E-05 0.0000E+00 

𝜎𝜎 33.45 0.04 0.000 -9.2872E-06 0.0000E+00 

e 0.00 262.39 0.971 -5.3579E-06 1.0000E-04 

 266 

Table 6. Correlation coefficients for M2 267 

 Cint Qvent Kocc 𝜎𝜎 

Qvent 0.01    

Kocc 0.03 0.62   

𝜎𝜎 -0.01 0.03 0.06  

e 0.00 0.00 0.00 0.00 

 268 

 269 
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 270 

Figure 5. On the upper left, the residuals plot for M2 is presented; on the bottom left, the 271 

measured data compared to the simulated data for M2 is plotted. On the top right, the ACF for 272 

the residuals for M2 is plotted, and on the bottom right the cumulated periodogram for M2 is 273 

presented. 274 

 275 

18 
 



The best results are those of M3. The estimated values are reasonable (Table 7). The 276 

estimated ventilation flow rate is 20.13 m3/h (0.21 h-1). This value is similar to the results of 277 

similar research. For example, a study of the natural ventilation in college student dormitories 278 

reported an air change rate above 0.5 h-1 [20]. Another study related with ventilation in a 279 

commercial building reported an air change rate of 0.1 h-1 [21]. According to the ASHRAE 280 

handbook, the required minimum ventilation for the assessed room should be 121.31 m3/h, 281 

taking into account that no more than six people are expected to occupy the area for its 282 

normal use. The human emission rate of CO2 estimated by the model is 12,793 mg/h (6.5 283 

L/h). According to the literature [22], the human emission rate of CO2 for an adult who is 284 

seated or reading or writing is 32,500 mg/h (16.5 L/h) for a female and 36,600 mg/h (18.6 285 

L/h) for a male. The value of the human emission rate of CO2 is 62% lower than the 286 

reference. As reported by other studies in the field [22], the reference value is calculated using 287 

a hypothesis that cannot be true for this case. However, the estimated value has the same 288 

order of magnitude.  289 

All the statistical tests calculated for M3 are inside the boundaries (Table 7 and Table 8). In 290 

addition, values of the autocorrelation plot and the cumulated periodogram are inside of the 291 

95% confidence bands (Figure 6). As a consequence, the residuals obtained can be regarded 292 

as white noise. The root mean square error for the third model was 41.10 ppm. This value is 293 

lower than that found in other studies presented in the literature that used deterministic 294 

approaches, such as Pantazaras study [10] who reported a RMSE ranging from 50 to 60 ppm. 295 

The accuracy of the reported model in this research is sufficient, because it is close to the 296 

accuracy of most commercial CO2 sensors. In this case, taking into account that the accuracy 297 

of the sensors is ±2% of full scale, the accuracy of the sensor is ±60 ppm. 298 

 299 

 300 
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 301 

Table 7. Statistical tests for M3 302 

Parameter Estimation Standard error Pr(>|t|) dF/dPar dPen/dPar 

Cint 393 14 0.000 0.0000E+00 0.0000E+00 

Qvent 20.13 0.71 0.000 -3.6668E-06 0.0000E+00 

Kocc 12,793 306 0.000 0.0000E+00 0.0000E+00 

𝜎𝜎 27.66 0.06 0.000 -9.2670E-06 0.0000E+00 

e 13.33 0.75 0.001 6.8335E-06 0.0000E+00 

 303 

Table 8. Correlation coefficients for M3 304 

 Cint Qvent Kocc 𝜎𝜎 

Qvent -0.04    

Kocc -0.03 0.57   

𝜎𝜎 -0.02 -0.02 -0.10  

e 0.02 0.05 0.13 -0.73 

 305 
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 306 

Figure 6. On the upper left, the residuals plot for M3 is presented; on the bottom left, the 307 

measured data compared to the simulated data for M3 is plotted. On the top right, the ACF for 308 

residuals for M3 is plotted, and on the bottom right the cumulated periodogram for M3 is 309 

presented. 310 

 311 
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The last model (M4) reported a similar value of the root mean square error to M3 (41.18 312 

ppm). However, statistical tests showed that the parameter window infiltrations are not 313 

relevant for the model (Table 9 and Table 10). Therefore, the fourth model is discarded. 314 

Generally, in the literature, infiltrations are unified with the supply air [10]. The results of this 315 

research enable us to affirm that the approximation generally used in the literature is 316 

acceptable. Further research considering measured external CO2 should be carried out to 317 

affirm that infiltrations are not relevant to model the internal CO2 concentration in buildings 318 

with good air tightness. 319 

 320 

Table 9. Statistical tests for M4 321 

Parameter Estimation Standard error Pr(>|t|) dF/dPar dPen/dPar 

Cint 393 13 0.000 -2.9813E-06 0.0000E+00 

Qvent 20.10 0.78 0.000 -4.1809E-05 0.0000E+00 

Qinf 0.00 0.01 0.996 4.0135E-05 0.0000E+00 

Kocc 12,748 330 0.0000E+00 6.1870E-05 0.0000E+00 

𝜎𝜎 29.67 0.04 0.0000E+00 -1.8548E-04 0.0000E+00 

e 0.00 126.39 0.910 8.2055E-04 8.0000E-04 

 322 

Table 10. Correlation coefficients for M4 323 

 Cint Qvent Qinf Kocc 𝜎𝜎 

Qvent 0.00     

Qinf 0.00 -0.02    

Kocc 0.00 -0.55 0.00   

𝜎𝜎 -0.02 0.07 0.00 0.10  

e 0.00 -0.02 1 0.00 0.00 
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 324 

 325 

Figure 7. On the upper left, the residuals plot for M4 is presented; on the bottom left the 326 

measured data in front of simulated data for M4 is plotted. On the top right, the ACF for the 327 

residuals for M4 is plotted, and on the bottom right the cumulated periodogram for M4 is 328 

presented. 329 
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The average computation time needed to carry out the estimation of the parameters, the 330 

statistical tests and the simulations for the current dataset was less than 3 seconds for each 331 

model. 332 

5 Conclusions 333 

This study investigated the possibility of using grey-box modelling for the CO2 concentration 334 

in a room. The procedure proposed in this paper for modelling indoor air CO2 concentration is 335 

formulated as a system of stochastic differential equations. To identify the parameters of each 336 

model, the maximum likelihood method is used. The models are validated using a set of 337 

statistical methods and physical interpretation of the estimated parameters. With these 338 

arguments, the best model is identified. 339 

The main contribution of this paper is a new approach to model the indoor CO2 concentration 340 

in a specific room, which could be broadened to entire buildings in the future. The proposed 341 

approach enables to obtain more accurate and simplistic models to simulate indoor CO2 than 342 

currently applied deterministic approaches. 343 

The results of this research demonstrated that once a model has been identified for a specific 344 

room, the CO2 concentration can be modelled inside the room using the occupancy, the 345 

ventilation rate, and the CO2 concentration of the ventilation air flow. 346 

The results of this research can be used to implement a tool in a BEMS to analyse the existing 347 

levels of ventilation in a building. In this way, we can detect which rooms are under-348 

ventilated or over-ventilated, and the building maintenance team can then investigate any 349 

potential problems. When the system is parametrized, a predictive control strategy can be 350 

implemented in a BEMS to optimize the building ventilation system. However, before 351 

implementing predictive control, the accuracy of different prediction horizons should be 352 

assessed. 353 
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Further research is required to investigate whether the proposed approach can be used to 354 

configure a model and determine the occupancy of a room when we know the CO2 355 

concentration in the room, the ventilation rate, and the CO2 concentration of the ventilation air 356 

flow. As a result, a service could be implemented in a BEMS to estimate the occupancy of a 357 

room. 358 

The approach used one CO2 sensor to estimate the model parameters. In this case, a perfect, 359 

mixed condition in the room is assumed. Extreme care should be taken when the location of a 360 

CO2 sensor is selected, due to the highly localised nature of indoor CO2 concentrations. For 361 

this reason, further research is required to determine how many sensors are needed to estimate 362 

ventilation parameters with an acceptable level of accuracy. In addition, the optimal position 363 

of sensors should be studied. 364 

Another aspect that should be studied in the future is the difference between the value of the 365 

human emission rate of CO2 obtained using grey-box modelling, and the value generally used 366 

in the literature. 367 

References 368 

[1] H.S. Park, M. Lee, H. Kang, T. Hong, J. Jeong, Development of a new energy 369 

benchmark for improving the operational rating system of office buildings using 370 

various data-mining techniques, Appl. Energy. 173 (2016) 225–237. 371 

doi:10.1016/j.apenergy.2016.04.035. 372 

[2] European comission, Financial support for energy efficiency in buildings, Report from 373 

the Commision to the European parliament and the Council, 2013. 374 

https://ec.europa.eu/energy/sites/ener/files/documents/report_financing_ee_buildings_c375 

om_2013_225_en.pdf. 376 

[3] M. Iten, S. Liu, A. Shukla, A review on the air-PCM-TES application for free cooling 377 

and heating in the buildings, Renew. Sustain. Energy Rev. 61 (2016) 175–186. 378 

25 
 

https://ec.europa.eu/energy/sites/ener/files/documents/report_financing_ee_buildings_com_2013_225_en.pdf
https://ec.europa.eu/energy/sites/ener/files/documents/report_financing_ee_buildings_com_2013_225_en.pdf


doi:10.1016/j.rser.2016.03.007. 379 

[4] A. Atmaca, N. Atmaca, Life cycle energy (LCEA) and carbon dioxide emissions 380 

(LCCO2A) assessment of two residential buildings in Gaziantep, Turkey, Energy 381 

Build. 102 (2015) 417–431. doi:10.1016/j.enbuild.2015.06.008. 382 

[5] K.I. Praseeda, B.V.V. Reddy, M. Mani, Embodied and operational energy of urban 383 

residential buildings in India, Energy Build. 110 (2016) 211–219. 384 

doi:10.1016/j.enbuild.2015.09.072. 385 

[6] B. Whitehead, D. Andrews, A. Shah, G. Maidment, Assessing the environmental 386 

impact of data centres part 2: Building environmental assessment methods and life 387 

cycle assessment, Build. Environ. 93 (2015) 395–405. 388 

doi:10.1016/j.buildenv.2014.08.015. 389 

[7] J. Hu, P. Karava, A state-space modeling approach and multi-level optimization 390 

algorithm for predictive control of multi-zone buildings with mixed-mode cooling, 391 

Build. Environ. 80 (2014) 259–273. doi:10.1016/j.buildenv.2014.05.003. 392 

[8] H. Huang, L. Chen, E. Hu, A new model predictive control scheme for energy and cost 393 

savings in commercial buildings: An airport terminal building case study, Build. 394 

Environ. 89 (2015) 203–216. doi:10.1016/j.buildenv.2015.01.037. 395 

[9] M. Macarulla, M. Albano, L.L. Ferreira, C. Teixeira, Lessons Learned in Building a 396 

Middleware for Smart Grids, J. Green Eng. 6 (2016) 1–26. doi:10.13052/jge1904-397 

4720.611. 398 

[10] A. Pantazaras, S.E. Lee, M. Santamouris, J. Yang, Predicting the CO2 levels in 399 

buildings using deterministic and identified models, Energy Build. 127 (2016) 774–400 

785. doi:10.1016/j.enbuild.2016.06.029. 401 

[11] A. Leavey, Y. Fu, M. Sha, A. Kutta, C. Lu, W. Wang, et al., Air quality metrics and 402 

wireless technology to maximize the energy efficiency of HVAC in a working 403 

26 
 



auditorium, Build. Environ. 85 (2015) 287–297. doi:10.1016/j.buildenv.2014.11.039. 404 

[12] D. Kolokotsa, A. Pouliezos, G. Stavrakakis, C. Lazos, Predictive control techniques for 405 

energy and indoor environmental quality management in buildings, Build. Environ. 44 406 

(2009) 1850–1863. doi:10.1016/j.buildenv.2008.12.007. 407 

[13] M. Vaccarini, A. Giretti, L.C. Tolve, M. Casals, Model predictive energy control of 408 

ventilation for underground stations, Energy Build. 116 (2016) 326–340. 409 

doi:10.1016/j.enbuild.2016.01.020. 410 

[14] D.W.U. Perera, D. Winkler, N.-O. Skeie, Multi-floor building heating models in 411 

MATLAB and Modelica environments, Appl. Energy. 171 (2016) 46–57. 412 

doi:10.1016/j.apenergy.2016.02.143. 413 

[15] M. Dahl Knudsen, S. Petersen, Demand response potential of model predictive control 414 

of space heating based on price and carbon dioxide intensity signals, Energy Build. 125 415 

(2016) 196–204. doi:10.1016/j.enbuild.2016.04.053. 416 

[16] C.C. Menassa, N. Taylor, J. Nelson, Optimizing hybrid ventilation in public spaces of 417 

complex buildings – A case study of the Wisconsin Institutes for Discovery, Build. 418 

Environ. 61 (2013) 57–68. doi:10.1016/j.buildenv.2012.12.009. 419 

[17] H.B. Gunay, J. Bursill, B. Huchuk, W. O’Brien, I. Beausoleil-Morrison, Shortest-420 

prediction-horizon model-based predictive control for individual offices, Build. 421 

Environ. 82 (2014) 408–419. doi:10.1016/j.buildenv.2014.09.011. 422 

[18] Y. Yu, V. Loftness, D. Yu, Multi-structural fast nonlinear model-based predictive 423 

control of a hydronic heating system, Build. Environ. 69 (2013) 131–148. 424 

doi:10.1016/j.buildenv.2013.07.018. 425 

[19] J.C. Salcido, A.A. Raheem, R.R.A. Issa, From simulation to monitoring: Evaluating the 426 

potential of mixed-mode ventilation (MMV) systems for integrating natural ventilation 427 

in office buildings through a comprehensive literature review, Energy Build. 127 428 

27 
 



(2016) 1008–1018. doi:10.1016/j.enbuild.2016.06.054. 429 

[20] H. Li, X. Li, M. Qi, Field testing of natural ventilation in college student dormitories 430 

(Beijing, China), Build. Environ. 78 (2014) 36–43. 431 

doi:10.1016/j.buildenv.2014.04.009. 432 

[21] L.C. Ng, J. Wen, Estimating building airflow using CO2 measurements from a 433 

distributed sensor network, HVAC&R Res. 17 (2011) 344–365. 434 

doi:10.1080/10789669.2011.572223. 435 

[22] W. Zhang, L. Wang, Z. Ji, L. Ma, Y. Hui, Test on Ventilation Rates of Dormitories and 436 

Offices in University by the CO2 Tracer Gas Method, in: Procedia Eng., Elsevier, 437 

2015: pp. 662–666. doi:10.1016/j.proeng.2015.08.1061. 438 

[23] K.W. Cheong, Airflow measurements for balancing of air distribution system — tracer-439 

gas technique as an alternative?, Build. Environ. 36 (2001) 955–964. 440 

doi:10.1016/S0360-1323(00)00046-9. 441 

[24] S. Cui, M. Cohen, P. Stabat, D. Marchio, CO2 tracer gas concentration decay method 442 

for measuring air change rate, Build. Environ. 84 (2015) 162–169. 443 

doi:10.1016/j.buildenv.2014.11.007. 444 

[25] M. Labat, M. Woloszyn, G. Garnier, J.J. Roux, Assessment of the air change rate of 445 

airtight buildings under natural conditions using the tracer gas technique. Comparison 446 

with numerical modelling, Build. Environ. 60 (2013) 37–44. 447 

doi:10.1016/j.buildenv.2012.10.010. 448 

[26] K.K. Andersen, H. Madsen, L.H. Hansen, Modelling the heat dynamics of a building 449 

using stochastic differential equations, Energy Build. 31 (2000) 13–24. 450 

doi:10.1016/S0378-7788(98)00069-3. 451 

[27] P. Bacher, H. Madsen, Identifying suitable models for the heat dynamics of buildings, 452 

Energy Build. 43 (2011) 1511–1522. doi:10.1016/j.enbuild.2011.02.005. 453 

28 
 



[28] A. Thavlov, H. Madsen, A non-linear stochastic model for an office building with air 454 

infiltration, Int. J. Sustain. Energy Plan. Manag. 7 (2015) 55–66. 455 

doi:10.5278/IJSEPM.2015.7.5. 456 

[29] N.R. Kristensen, H. Madsen, S.B. Jørgensen, Parameter estimation in stochastic grey-457 

box models, Automatica. 40 (2004) 225–237. doi:10.1016/j.automatica.2003.10.001. 458 

[30] H. Madsen, J. Holst, Estimation of continuous-time models for the heat dynamics of a 459 

building, Energy Build. 22 (1995) 67–79. doi:10.1016/0378-7788(94)00904-X. 460 

[31] G. Reynders, J. Diriken, D. Saelens, Quality of grey-box models and identified 461 

parameters as function of the accuracy of input and observation signals, Energy Build. 462 

82 (2014) 263–274. doi:10.1016/j.enbuild.2014.07.025. 463 

[32] X. Li, J. Wen, Building energy consumption on-line forecasting using physics based 464 

system identification, Energy Build. 82 (2014) 1–12. 465 

doi:10.1016/j.enbuild.2014.07.021. 466 

[33] R. Baetens, D. Saelens, Modelling uncertainty in district energy simulations by 467 

stochastic residential occupant behaviour, J. Build. Perform. Simul. 9 (2016) 431–447. 468 

doi:10.1080/19401493.2015.1070203. 469 

[34] N. Mahyuddin, H. Awbi, The spatial distribution of carbon dioxide in an environmental 470 

test chamber, Build. Environ. 45 (2010) 1993–2001. 471 

doi:10.1016/j.buildenv.2010.02.001. 472 

[35] N. Mahyuddin, H.B. Awbi, M. Alshitawi, The spatial distribution of carbon dioxide in 473 

rooms with particular application to classrooms, Indoor Built Environ. 23 (2014) 433–474 

448. doi:10.1177/1420326X13512142. 475 

[36] A. Bulińska, Z. Popiołek, Z. Buliński, Experimentally validated CFD analysis on 476 

sampling region determination of average indoor carbon dioxide concentration in 477 

occupied space, Build. Environ. 72 (2014) 319–331. 478 

29 
 



doi:10.1016/j.buildenv.2013.11.001. 479 

[37] F.D. Heidt, H. Werner, Microcomputer-aided measurement of air change rates, Energy 480 

Build. 9 (1986) 313–320. doi:10.1016/0378-7788(86)90036-8. 481 

[38] D. Laussmann, D. Helm, Air Change Measurements Using Tracer Gases: Methods and 482 

Results. Significance of air change for indoor air quality, in: Chem. Emiss. Control. 483 

Radioact. Pollut. Indoor Air Qual., InTech, 2011. doi:10.5772/18600. 484 

[39] E. Specht, T. Redemann, N. Lorenz, Simplified mathematical model for calculating 485 

global warming through anthropogenic CO2, Int. J. Therm. Sci. 102 (2016) 1–8. 486 

doi:10.1016/j.ijthermalsci.2015.10.039. 487 

[40] CTSM-R Development Team, Continuous Time Stochastic Modeling in R User’s 488 

Guide and Reference Manual, 2015. http://ctsm.info/. 489 

[41] CTSM-R Development Team, Grey-box modeling of the heat dynamics of a building 490 

with CTSM-R, 2013. http://ctsm.info/. 491 

30 
 

http://ctsm.info/
http://ctsm.info/

	Authors’ affiliation
	Corresponding author
	Abstract
	1 Introduction
	2 Grey-box modelling
	3 Methodology
	3.1 Data collection
	3.2 Modelling process
	3.3 Model validation

	4 Results and discussion
	5 Conclusions
	References
	Caratula_authorsfinaldraft-1.pdf
	UPCommons
	Portal del coneixement obert de la UPC
	http://upcommons.upc.edu/e-prints
	Aquesta és una còpia de la versió author’s final draft d'un article publicat a la revista Building and Environment.
	URL d'aquest document a UPCommons E-prints:
	http://hdl.handle.net/2117/101974
	Article publicat / Published paper:
	Macarulla, M., Casals, M., Carnevali, M., Forcada, N., Gangolells, M.  (2017). Modelling indoor air carbon dioxide concentration using grey-box models. Building and Environment, In Press. DOI: <10.1016/j.buildenv.2017.02.022>.
	© <2017>. Aquesta versió està disponible sota la llicència  CC-BY-NC-ND 4.0 http://creativecommons.org/licenses/by-nc-nd/4.0/




