404,922 research outputs found

    The processing peptidase of yeast mitochondria

    Get PDF
    Two proteins co-operate in the proteolytic cleavage of mitochondrial precursor proteins: the mitochondrial processing peptidase (MPP) and the processing enhancing protein (PEP). In order to understand the structure and function of this novel peptidase, we have isolated mutants of Saccharomyces cerevisiae which were temperature sensitive in the processing of mitochondrial precursor proteins. Here we report on the mif2 mutation which is deficient in MPP. Mitochondria from the mif2 mutant were able to import precursor proteins, but not to cleave the presequences. The MPP gene was isolated. MPP is a hydrophilic protein consisting of 482 amino acids. Notably, MPP exhibits remarkable sequence similarity to PEP. We speculate that PEP and MPP have a common origin and have evolved into two components with different but mutually complementing functions in processing of precursor proteins

    Assembly of the precursor and processed light-harvesting chlorophyll a/b protein of Lemna into the light-harvesting complex II of barley etiochloroplasts.

    Get PDF
    When the in vitro synthesized precursor of a light-harvesting chlorophyll a/b binding protein (LHCP) from Lemna gibba is imported into barley etiochloroplasts, it is processed to a single form. Both the processed form and the precursor are found in the thylakoid membranes, assembled into the light-harvesting complex of photosystem II. Neither form can be detected in the stromal fraction. The relative amounts of precursor and processed forms observed in the thylakoids are dependent on the developmental stage of the plastids used for uptake. The precursor as well as the processed form can also be detected in thylakoids of greening maize plastids used in similar uptake experiments. This detection of a precursor in the thylakoids, which has not been previously reported, could be a result of using rapidly developing plastids and/or using an heterologous system. Our results demonstrate that the extent of processing of LHCP precursor is not a prerequisite for its inclusion in the complex. They are also consistent with the possibility that the processing step can occur after insertion of the protein into the thylakoid membrane

    Processing peptidase of Neurospora mitochondria

    Get PDF
    Subunit 9 (dicyclohexylcarbodiimide binding protein, 'proteolipid') of the mitochondrial F1F0-ATPase is a nuclearly coded protein in Neurospora crassa. It is synthesized on free cytoplasmic ribosomes as a larger precursor with an NH2-terminal peptide extension. The peptide extension is cleaved off after transport of the protein into the mitochondria. A processing activity referred to as processing peptidase that cleaves the precursor to subunit 9 and other mitochondrial proteins is described and characterized using a cell-free system. Precursor synthesized in vitro was incubated with extracts of mitochondria. Processing peptidase required Mn2+ for its activity. Localization studies suggested that it is a soluble component of the mitochondrial matrix. The precursor was cleaved in two sequential steps via an intermediate-sized polypeptide. The intermediate form in the processing of subunit 9 was also seen in vivo and upon import of the precursor into isolated mitochondria in vitro. The two cleavage sites in the precursor molecule were determined. The data indicate that: (a) the correct NH2-terminus of the mature protein was generated, (b) the NH2-terminal amino acid of the intermediate-sized polypeptide is isoleucine in position-31. The cleavage sites show similarity of primary structure. It is concluded that processing peptidase removes the peptide extension from the precursor to subunit 9 (and probably other precursors) after translocation of these polypeptides (or the NH2-terminal part of these polypeptides) into the matrix space of mitochondria

    Herpes simplex virus interferes with amyloid precursor protein processing

    Get PDF
    Background The early events underlying Alzheimer's disease (AD) remain uncertain, although environmental factors may be involved. Work in this laboratory has shown that the combination of herpes simplex virus type 1 (HSV1) in brain and carriage of the APOE-ε4 allele of the APOE gene strongly increases the risk of developing AD. The development of AD is thought to involve abnormal aggregation or deposition of a 39–43 amino acid protein – β amyloid (Aβ) – within the brain. This is cleaved from the much larger transmembranal protein 'amyloid precursor protein' (APP). Any agent able to interfere directly with Aβ or APP metabolism may therefore have the capacity to contribute towards AD. One recent report showed that certain HSV1 glycoprotein peptides may aggregate like Aβ; a second study described a role for APP in transport of virus in squid axons. However to date the effects of acute herpesvirus infection on metabolism of APP in human neuronal-type cells have not been investigated. In order to find if HSV1 directly affects APP and its degradation, we have examined this protein from human neuroblastoma cells (normal and transfected with APP 695) infected with the virus, using Western blotting. Results We have found that acute HSV1 (and also HSV2) infection rapidly reduces full length APP levels – as might be expected – yet surprisingly markedly increases levels of a novel C-terminal fragment of APP of about 55 kDa. This band was not increased in cells treated with the protein synthesis inhibitor cycloheximide Conclusion Herpes virus infection leads to rapid loss of full length APP from cells, yet also causes increased levels of a novel 55 kDa C-terminal APP fragment. These data suggest that infection can directly alter the processing of a transmembranal protein intimately linked to the aetiology of AD

    Cloning, preparation and preliminary crystallographic studies of penicillin V acylase autoproteolytic processing mutants

    Get PDF
    The crystallization of three catalytically inactive mutants of penicillin Vacylase (PVA) from Bacillus sphaericus in precursor and processed forms is reported. The mutant proteins crystallize in different primitive monoclinic space groups that are distinct from the crystal forms for the native enzyme. Directed mutants and clone constructs were designed to study the post-translational autoproteolytic processing of PVA. The catalytically inactive mutants will provide threedimensional structures of precursor PVA forms, plus open a route to the study of enzyme-substrate complexes for this industrially important enzyme

    Journal Staff

    Get PDF
    Adenovirus encodes for the pVII protein, which interacts and modulates virus DNA structure in the infected cells. The pVII protein is synthesized as the precursor protein and undergoes proteolytic processing by viral proteinase Avp, leading to release of a propeptide sequence and accumulation of the mature VII protein. Here we elucidate the molecular functions of the propeptide sequence present in the precursor pVII protein. The results show that the propeptide is the destabilizing element targeting the precursor pVII protein for proteasomal degradation. Our data further indicate that the propeptide sequence and the lysine residues K26 and K27 regulate the precursor pVII protein stability in a co-dependent manner. We also provide evidence that the Cullin-3 E3 ubiquitin ligase complex alters the precursor pVII protein stability by association with the propeptide sequence. In addition, we show that inactivation of the Cullin-3 protein activity reduces adenovirus E1A gene expression during early phase of virus infection. Collectively, our results indicate a novel function of the adenovirus propeptide sequence and involvement of Cullin-3 in adenovirus gene expression

    Precursor proteins are transported into mitochondria in the absence of proteolytic cleavage of the additional sequences

    Get PDF
    Many nuclear-coded mitochondrial proteins are synthesized as larger precursor polypeptides that are proteolytically processed during import into the mitochondrion. This processing appears to be catalyzed by a soluble, metal-dependent protease localized in the mitochondrial matrix. In this report we employ an in vitro system to investigate the role of processing in protein import. Intact Neurospora crassa mitochondria were incubated with radiolabeled precursors in the presence of the chelator o-phenanthroline. Under these conditions, the processing of the precursors of the beta-subunit of F1-ATPase (F1 beta) and subunit 9 of the F0F1-ATPase was strongly inhibited. Protease- mapping studies indicated that import of the precursor proteins into the mitochondria continued in the absence of processing. Upon readdition of divalent metal to the treated mitochondria, the imported precursors were quantitatively converted to their mature forms. This processing of imported precursors occurred in the absence of a mitochondrial membrane potential and was extremely rapid even at 0 degrees C. This suggests that all or part of the polypeptide chain of the imported precursors had been translocated into the matrix location of the processing enzyme. Localization experiments suggested that the precursor to F1 beta is peripherally associated with the mitochondrial membrane while the precursor to subunit 9 appeared to be tightly bound to the membrane. We conclude that proteolytic processing is not necessary for the translocation of precursor proteins across mitochondrial membranes, but rather occurs subsequent to this event. On the basis of these and other results, a hypothetical pathway for the import of F1 beta and subunit 9 is proposed

    Few Graphene layer/Carbon-Nanotube composite Grown at CMOS-compatible Temperature

    Get PDF
    We investigate the growth of the recently demonstrated composite material composed of vertically aligned carbon nanotubes capped by few graphene layers. We show that the carbon nanotubes grow epitaxially under the few graphene layers. By using a catalyst and gaseous carbon precursor different from those used originally we establish that such unconventional growth mode is not specific to a precise choice of catalyst-precursor couple. Furthermore, the composite can be grown using catalyst and temperatures compatible with CMOS processing (T < 450\degree C).Comment: 4 pages, 4 figure
    corecore