513 research outputs found

    Impact of polyplex micelles installed with cyclic RGD peptide as ligand on gene delivery to vascular lesions

    Get PDF
    Gene therapy is expected to open a new strategy for the treatment of refractory vascular diseases, so the development of appropriate gene vectors for vascular lesions is needed. To realize this requirement with a non-viral approach, cyclo(RGDfK) peptide (cRGD) was introduced to block copolymer, poly(ethylene glycol)-block-polycation carrying ethylenediamine units (PEG-PAsp(DET)). cRGD recognizes αvβ3 and αvβ5 integrins, which are abundantly expressed in vascular lesions. cRGD-conjugated PEG-PAsp(DET) (cRGD-PEG-PAsp(DET)) formed polyplex micelles through complexation with plasmid DNA (pDNA), and the cRGD-PEG-PAsp(DET) micelles achieved significantly more efficient gene expression and cellular uptake as compared with PEG-PAsp(DET) micelles in endothelial cells and vascular smooth muscle cells. Intracellular tracking of pDNA showed that cRGD-PEG-PAsp(DET) micelles were internalized via caveolae-mediated endocytosis, which is associated with a pathway avoiding lysosomal degradation, and that PEG-PAsp(DET) micelles were transported to acidic endosomes and lysosomes via clathrin-mediated endocytosis. Further, in vivo evaluation in rat carotid artery with a neointimal lesion revealed that cRGD-PEG-PAsp(DET) micelles realized sustained gene expression, while PEG-PAsp(DET) micelles facilitated rapid but transient gene expression. These findings suggest that introduction of cRGD to polyplex micelles might create novel and useful functions for gene transfer and contribute to the establishment of efficient gene therapy for vascular diseases

    Electrostatic hierarchical co-assembly in aqueous solutions of two oppositevely charged double hydrophilic diblock copolymers

    Get PDF
    peer reviewedThe formation of spherical micelles in aqueous solutions of poly(N-methyl-2-vinyl pyridinium iodide)-block-poly(ethylene oxide), P2MVP-b-PEO and poly(acrylic acid)-block-poly(vinyl alcohol), PAA-b-PVOH has been investigated with light scattering-titrations, dynamic and static light scattering, and 1H 2D Nuclear Overhauser Effect Spectroscopy. Complex coacervate core micelles, also called PIC micelles, block ionomer complexes, and interpolyelectrolyte complexes, are formed in thermodynamic equilibrium under charge neutral conditions (pH 8, 1 mM NaNO3, T = 25 °C) through electrostatic interaction between the core-forming P2MVP and PAA blocks. 2D 1H NOESY NMR experiments show no cross-correlations between PEO and PVOH blocks, indicating their segregation in the micellar corona. Self-consistent field calculations support the conclusion that these C3Ms are likely to resemble a ‘patched micelle’; that is, micelles featuring a ‘spheres-on-sphere’ morphology

    温度応答性を有する全イオン性PIC (ポリイオンコンプレックス)ミセルの基礎物性

    Get PDF
    京都大学新制・課程博士博士(工学)甲第23222号工博第4866号新制||工||1759(附属図書館)京都大学大学院工学研究科高分子化学専攻(主査)教授 秋吉 一成, 教授 大内 誠, 准教授 松岡 秀樹学位規則第4条第1項該当Doctor of Philosophy (Engineering)Kyoto UniversityDFA

    The Impact of Polymer Architecture on Polyion Complex (PIC) Micelles: When Topology Matters (and When It Doesn't)

    Get PDF
    The influence of homopolymer architecture on the properties of polyion complex micelles is reported. Using a combination of dynamic and static light scattering, the authors show how the architecture is only relevant in kinetically trapped states of micelles formed by the electrostatic assembly of poly(N-isopropyl acrylamide-block-styrene sulfonate) (p(NIPAM-b-SS) and linear, 4-arm, 8-arm star quaternized poly(dimethyl amino ethyl acrylate) (PDMAEA) homopolymers or poly(amidoamine) (PAMAM) dendrimers. Interestingly, the micellar size and the aggregation number in these kinetically arrested states follow a clear trend with the number of arms but differ in the case of dendrimers possibly due to the distinct chemical nature of the monomers. The authors show that if the micelles are prepared in a weak polyelectrolyte pairing regime (i.e., high ionic strength), they all converge into similar structures. The presented findings represent a new way of controlling the properties of polyion complex micelles through kinetically trapped states
    corecore