539 research outputs found

    Dirichlet belief networks for topic structure learning

    Full text link
    Recently, considerable research effort has been devoted to developing deep architectures for topic models to learn topic structures. Although several deep models have been proposed to learn better topic proportions of documents, how to leverage the benefits of deep structures for learning word distributions of topics has not yet been rigorously studied. Here we propose a new multi-layer generative process on word distributions of topics, where each layer consists of a set of topics and each topic is drawn from a mixture of the topics of the layer above. As the topics in all layers can be directly interpreted by words, the proposed model is able to discover interpretable topic hierarchies. As a self-contained module, our model can be flexibly adapted to different kinds of topic models to improve their modelling accuracy and interpretability. Extensive experiments on text corpora demonstrate the advantages of the proposed model.Comment: accepted in NIPS 201

    Efficient unstructured mesh generation for marine renewable energy applications

    Get PDF
    Renewable energy is the cornerstone of preventing dangerous climate change whilst maintaining a robust energy supply. Tidal energy will arguably play a critical role in the renewable energy portfolio as it is both predictable and reliable, and can be put in place across the globe. However, installation may impact the local and regional ecology via changes in tidal dynamics, sediment transport pathways or bathymetric changes. In order to mitigate these effects, tidal energy devices need to be modelled in order to predict hydrodynamic changes. Robust mesh generation is a fundamental component required for developing simulations with high accuracy. However, mesh generation for coastal domains can be an elaborate procedure. Here, we describe an approach combining mesh generators with Geographical Information Systems. We demonstrate robustness and efficiency by constructing a mesh with which to examine the potential environmental impact of a tidal turbine farm installation in the Orkney Islands. The mesh is then used with two well-validated ocean models, to compare their flow predictions with and without a turbine array. The results demonstrate that it is possible to create an easy-to-use tool to generate high-quality meshes for combined coastal engineering, here tidal turbines, and coastal ocean simulations

    The GeoClaw software for depth-averaged flows with adaptive refinement

    Full text link
    Many geophysical flow or wave propagation problems can be modeled with two-dimensional depth-averaged equations, of which the shallow water equations are the simplest example. We describe the GeoClaw software that has been designed to solve problems of this nature, consisting of open source Fortran programs together with Python tools for the user interface and flow visualization. This software uses high-resolution shock-capturing finite volume methods on logically rectangular grids, including latitude--longitude grids on the sphere. Dry states are handled automatically to model inundation. The code incorporates adaptive mesh refinement to allow the efficient solution of large-scale geophysical problems. Examples are given illustrating its use for modeling tsunamis, dam break problems, and storm surge. Documentation and download information is available at www.clawpack.org/geoclawComment: 18 pages, 11 figures, Animations and source code for some examples at http://www.clawpack.org/links/awr10 Significantly modified from original posting to incorporate suggestions of referee

    High-frequency earth rotation variations deduced from altimetry-based ocean tides

    Get PDF
    A model of diurnal and semi-diurnal variations in Earth rotation parameters (ERP) is constructed based on altimetry-measured tidal heights from a multi-mission empirical ocean tide solution. Barotropic currents contributing to relative angular momentum changes are estimated for nine major tides in a global inversion algorithm that solves the two-dimensional momentum equations on a regular 0.5^\circ grid with a heavily weighted continuity constraint. The influence of 19 minor tides is accounted for by linear admittance interpolation of ocean tidal angular momentum, although the assumption of smooth admittance variations with frequency appears to be a doubtful concept for semi-diurnal mass terms in particular. A validation of the newly derived model based on post-fit corrections to polar motion and universal time (\Delta UT1) from the analysis of Very Long Baseline Interferometry (VLBI) observations shows a variance reduction for semi-diurnal \Delta UT1 residuals that is significant at the 0.05 level with respect to the conventional ERP model. Improvements are also evident for the explicitly modeled K_1, Q_1, and K_2 tides in individual ERP components, but large residuals of more than 15 \upmu as remain at the principal lunar frequencies of O_1 and M_2. We attribute these shortcomings to uncertainties in the inverted relative angular momentum changes and, to a minor extent, to violation of mass conservation in the empirical ocean tide solution. Further dedicated hydrodynamic modeling efforts of these anomalous constituents are required to meet the accuracy standards of modern space geodesy

    A Nonstationary Negative Binomial Time Series with Time-Dependent Covariates: Enterococcus Counts in Boston Harbor

    Get PDF
    Boston Harbor has had a history of poor water quality, including contamination by enteric pathogens. We conduct a statistical analysis of data collected by the Massachusetts Water Resources Authority (MWRA) between 1996 and 2002 to evaluate the effects of court-mandated improvements in sewage treatment. Motivated by the ineffectiveness of standard Poisson mixture models and their zero-inflated counterparts, we propose a new negative binomial model for time series of Enterococcus counts in Boston Harbor, where nonstationarity and autocorrelation are modeled using a nonparametric smooth function of time in the predictor. Without further restrictions, this function is not identifiable in the presence of time-dependent covariates; consequently we use a basis orthogonal to the space spanned by the covariates and use penalized quasi-likelihood (PQL) for estimation. We conclude that Enterococcus counts were greatly reduced near the Nut Island Treatment Plant (NITP) outfalls following the transfer of wastewaters from NITP to the Deer Island Treatment Plant (DITP) and that the transfer of wastewaters from Boston Harbor to the offshore diffusers in Massachusetts Bay reduced the Enterococcus counts near the DITP outfalls
    corecore