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AbstrackThe effect of environmental variability on marine population dynamics remains a challenging 
problem for fisheries science. The impact of four decades of environmental change on larval abundance of 
the northem anchovy (Engruulis morda) off Califomia is analyzed using recently developed nonlinear 
statistical techniques that extend linear multiple regression analysis. The three techniques used are: altemat- 
ing conditional expectation, additivity and variance stabilization, and generalized additive interactive model- 
ling. The dependencies of larval abundance on upwelling intensity and total anchovy biomass are nonlinear 
and account for 84% of the interannual variability; a linear regression analysis explained 37% of the vari- 
ance. The higher larval abundances are produced with medium to large adult biomasses coupled with moder- 
ate upwelling intensity. These empirical results suggest that marine populations will respond to climatic 
trends, but will do so in a nonlinear manner. These nonlinear satistical algorithms, which are not yet widely 
used in ecology, provide a promising method for exploring the form of the relationships between environ- 
mental changes and populations responses. 

Résumé : L’effet de la variabilité environnementale sur la dynamique des populations marines demeure un 
problème non résolu pour la science des pêches. Les conséquences de quatre décennies de changements 
environnementaux sur l’abondance des larves de l’anchois du Pacifique (Engruulis morda) au large de la 
Califomie sont analysées au moyen de méthodes statistiques non linéaires récemment mises au point qui 
compl5tent l’analyse de régression multiple linéaire. Les trois techniques utilisées sont : altemance des es- 
pérances mathématiques conditionnelles, additivité et stabilisation de la variance, et modélisation additive 
interactive généralisée. La dépendance de l’abondance des larves à l’égard de l’intensité des remontées 
d‘eau et de la biomasse totale d‘anchois est non lineaire et représente 84 % de la variabilité interannuelle. 
Une analyse de régression linkaire explique 37 % de la variance. Les abondances plus élevées de larves sont 
produites par des biomasses adultes moyennes à grandes jumelées à une intensité modérée des remontées 
d’eau. Les résultats empiriques portent à croire que les populations marines réagissent aux tendances 
climatiques mais de façon non linéaire. Ces algorithmes statistiques non linéaires, qui ne sont pas encore 
largement utilisés en écologie, représentent une méthode prometteuse d’analyse des formes de relations 
entre les changements environnementaux et les réactions des populations animales. 



41 8 

Introduction 
Precipitous declines or sudden recoveries have been observed 
in the world's largest fisheries of clupeoids. These boom and 
bust phenomena are found in the sardine and anchovy fisheries 
of the Benguela, the California, the Canary, and the Peru 
Current ecosystems (Sharp and Csirke 1983; Pauly and Tsu- 
kayama 1987). This instability appears to be due to changes in 
recruitment success (i.e., the addition of young fishes to the 
fishable population). Significant variations in recruitment are 
likely to arise both from excessive biomass depletion due to 
intensive fishing pressure and from alteration in the mortality 
rates of the embryonic and larval stages due to particular 
sensitivity to environmental change (Lasker 198 1 , 1985; Smith 
1985; Beverton 1990). However, recent studies suggest that 
the final recruitment success is not necessarily linked to early 
larval abundance (Peterman et al. 1988) and that predation 
plays a major role in prerecruit mortality (Sissenwine 1984). 

Environmental and ecological time series are now available 
for several decades. If some strong relationships do exist 
between environmental fluctuations and fish population 
dynamics, ecologists are now in a good position to identify 
emergent patterns. The California Cooperative Oceanic 
Fisheries Investigations (CalCOFI) data represent one of the 
most impressive marine data sets available, covering a multi- 
decadal time period for the entire southern California ecosys- 
tem (Smith and Moser 1988). Since 1951, larvae from the 
central population of the northern anchovy (Engraulis 
mordux) have been sampled over the entire range of its 
distribution. Environmental data have been collected inde- 
pendently and during the sampling cruises. 

Analysis of the relationships between two or more funda- 
mental variables have most commonly employed linear statis- 
tical methods (Tyler 1992) or used an a priori transformation, 
such as a logarithmic transformation (Parrish and MacCall 
1978; Crecco et al. 1986). However, a scattergram that reveals 
no linear relationship does not necessarily meanthe absence of 
a tight link (Kareiva 1990; R. Mendelssohn, unpublished 
data). While nonlinearities are not new to ecologists, rigourous 
statistical methods to deal with them are. Recently developed 
nonlinear statistical methods provide useful tools to explore 
the relationship between different sets of variables (Breiman 
and Friedman 1985; Buja et al. 1989; Hastie and Tibshirani 
1990; Gifi 1990). In this paper, we apply these nonlinear 
statistical techniques to the California Current anchovy 
and attempt to reconcile the empirical results to previous 
theoretical and field studies. 

Data 
Annual mean abundance of northern anchovy larvae in the 
principal reproductive area (32-34"N, 117.5-1 19"W) was 
calculated by averaging all sampled stations. From 195 1 to 
1990, 32 years were intensively sampled; a total of 3257 
stations are represented. Mean annual larval number per square 
metre for the period 1951-75 are from Smith and Eppley 
(1982). P.E. Smith (Southwest Fisheries Center, National 
Marine Fisheries Service, La Jolla, CA 92038) provided us 
with the data from 1975 to 1990. Larvae are mostly found 
during the first two quarters; however, for certain years larvae 
were abundant during the third or fourth quarter (1954,1955, 

1956, 1966, 1967, 1972, 1989). Moreover, in some years, 
larvae were more abundant during the third and fourth quarters 
(1952, 1953). This led us to use annual mean abundance of 
northern anchovy larvae. No data were collected in 1970, 
1971, 1973, and 1976. Poor data are available during 1974, 
1977,1982, and 1983 where only one quarter among four was 
sampled. For these reasons those 8 years were excluded from 
the analysis. 

Anchovy biomass during this period was variable. By 
combining available fisheries data, sonar surveys, and egg 
production information, MacCall and Methot (1983), Methot 
(1 989), and Jacobson and Lo (1991) have produced estimates 
of total anchovy biomass. We use these estimates in our 
analysis. 

Because of our lack of understanding of the casual mecha- 
nisms that may be responsible for the observed variations 
in larval number, several environmental time series were 
selected for our analysis. Temperature has a strong effect on 
larval growth and consequently on larval stage duration 
(Blaxter and Hunter 1982; Houde 1989). To test for the 
relevance of low-frequency temperature variability, the 
temperature collected at each sampling station at 10 m depth 
was averaged over the year. The consistent presence of 
massive populations of small pelagic clupeoid fishes in coastal 
upwelling regions around the world suggests a strong link 
of the population dynamics of these fishes to the upwelling 
process. Coastal upwelling is a dominant oceanographic 
process off the California coast (Reid et al. 1958). Northerly 
winds cause coastal water to move offshore, and the deficit at 
the coast is compensated for by an upward flow of cold and 
nutrient-rich subsurface water. An estimate of the upwelling 
intensity is given by the offshore component of the Ekman 
transport (Bakun 1973), which is the wind-driven flow 
integrated over the ocean layer affected by the wind. The 
relative constancy in direction of the wind blowing along the 
California coast leads to a tight relationship between indices 
ofupwelling and those of wind mixing that is roughly propor- 
tional to the cube of the wind speed (Elsberry and Garwood 
1978). The upwelling index tracks variability in the main 
features of the upwelling process: the offshore flow of coastal 
water, the coastal enrichment by the upward nutrient input, and 
the mixing of the surface layers by the wind. 

Variations in the upwelling process in the northern anchovy 
reproductive area from 1951 to 1990 are represented by an 
annual upwelling index derived from monthly values at 33"N, 
119"W. This index is calculated using geostrophic winds 
derived from atmospheric pressure fields by the U.S. Navy 
Fleet Numerical Oceanography Center. Bakun (1973) details 
the procedure used to derive geostrophic winds fiom atmos- 
pheric pressure analyses and to estimate upwelling indices. As 
mentioned in Bakun (1973) these indices should be used with 
caution when considering long-term variability in this region. 
During the 1950s and 1960s the origin of the pressure fields 
charts changed (Bakun 1973). The procedure used to produce 
the pressure fields has also evolved from hand analysis to 
computer analysis. The bias introduced by these changes 
remains unknown. Discrepancies between the calculated and 
measured winds at the latitude of the Southern California Bight 
have also been noted (Bakun 1973,1975; Halliwell and Allen 
1987) and mean annual deviations range between O and 26%. 

' 

' 

' 



41 9 

Methods 
Present knowledge of the relationships between the anchovy 
larval number and relevant population and environmental 
variables is not sufficient to know a priori their correct form. 
Therefore, it is desirable to have methods that use the data (i.e., 
nonparametric) to estimate the appropriate functional form. 
Iterative algorithms have recently been developed that extend 
linear multiple regression analysis to generalized additive 
models (Hastie and Tibshirani 1990). These models are addi- 
tive in empirically estimated transformations of the data. 
These procedures, which are not yet widely used in ecology, 
provide a method for exploring the form of the relationships 
between the response and the predictor variables when the 
forms of these relationships are unknown. Empirical, objec- 
tive identification of possible nonlinear relationships are also 
made possible. 

The usual linear mutiple regression model for predicting a 
response (or dependent) variable Y fromp predictor variables 
Xi , where i = 1, ..., p ,  and for n observations, where j = 1 , ..., n, 
is given by 

“A 

F‘ 

P 
Yo) = b,Xi(i)+ eo)  

i= I 

where the e(j) are independent, identically distributed, zero 
mean random variables, and a mean term is implicitly defined 
by puttingq, for example, equal to one. The nonlinear multi- 
ple regression model (or generalized additive model is given 

, 

by 
P 

xyci>> = c b i q ( q m +  w(i> 
i= 1 

where the functions S(y) and ?(A‘) are unknown and must be 
nonparametrically estimated from the data. The wo) are inde- 
pendent, identically distributed, zero mean random variables, 
usually assumed to be gaussian but not restricted to that 
assumption. 

There are several approaches to estimating the latter equation 
under differing assumptions about the optimization criteron 
and about the transformations, including alternating condi- 
tional expectations (ACE) (Breiman and Friedman 1985), 
additivity andvariance stabilization (AVAS) (Tibshirani 1988), 
and generalized additive interactive modelling (GAIM) (Hastie 
and Tibshirani 1990). The basic approach of each algorithm is 
iterative, where at each iteration, given the present estimates of 
S() and Ti(), i f k (where i, k = 1,l -p ) ,  the partial residual: 

v(i>> - i biq(q7)) 
jtk 

.? is calculated, and the transformation Tk() is calculated as the 
conditional expectation of the partial residual given X,.This 
conditional expectation is estimated from the data using some 
form of scatterplot smoother. As the bi are simply scaling 
factors, ACE and AVAS include the b, in the function q(), 
while GAIM estimates thebi’s to perform analysis of deviance 
tests on the parameters, similar to the more usual analysis of 
variance tests in linear regression analysis. 

,$ 

The algorithms converge to optimal solutions for a given 
criterion (such as the maximum correlation between the trans- 
formed dependent variable and the transformed predictor 
variables in the ACE algorithm). Each algorithm has its own 
smoother and convergence criterion. There is a fundamental 
trade-off between bias and variance governed by the smoothing 
parameter. A very small value of the smoothing parameter 
produces a nearly exact fit but with high bias. A high value of 
the smoothing parameter will give a very smooth fit that is 
unbiased but with a high variance. 

There are a number of properties of the ACE procedure that 
can lead to some anomalies (Breiman and Firedman 1985; 
Hastie and Tibshirani 1990). For a single predictor, ACE is 
symmetric in X and Y, whereas one expects a regression 
procedure to treat Y differently fromX. ACE is not equivariant 
under monotone transformations of the predictors, exhibits 
strange behaviour in low-correlations settings, and does not 
reproduce model transformations. Moreover, disjoint clusters 
are collapsed by ACE, and the crossing of eigenvalues can 
cause discontinous behaviour. 

AVAS is a modification of ACE designed for regression 
problems and uses an asymptotic variance-stabilizing trans- 
formation (the &‘(Yo)) is assumed to be strictly monotone). 
While AVAS does not share many of ACE? anomalies, there 
is much less theoretical support for the technique than there is 
for ACE. In particulary global convergence of AVAS has not 
been established. Both algorithms use locally weighted non- 
linear smoothers. GAIM uses cubic smoothing splines (which 
are linear smoothers) in the implementation that is available. 
GAIM also produces pointwise error bands that give better 
confidence in the observed nonlinearities that are found, but is 
restricted to transformations of the Xvariables only. 

Thus, results from any one of these algorithms must be 
considered with caution. As in using any statistical method, 
interpretation of the results must consider potential biases due 
to the assumptions underlying the techniques. One way to deal 
with the problem is to examine results using the three different 
techniques for the same data set. When each of the algorithms 
produces similar results there is more confidence in the 
findings. Consistency of the results with present ecological 
knowledge also reinforces confidence in their correctness. 

Results 
The relationships between larval number and temperature, the 
upwelling index, and total anchovy biomass were initially ex- 
plored by plotting the raw data (Fig. 1). No significant linear 
relationship was found between anchovy larval numbers and 
the temperature index as the data appear to be randomly 
scattered (Fig. 1A). When larval numbers are plotted versus 
the upwelling index (Fig. lB), low larval numbers are observed 
for both weak and strong upwelling intensities. High larval 
numbers are to be found for moderate upwelling index values: 
about 1.5 m3 * s-l per metre of coastline. Larval number and the 
total anchovy biomass appear to be positively correlated; 
however, the data appear scattered for high biomass values 
(Fig. 1C). 

A linearregression analysis using biomass and upwelling as 
predictor variables explained 37% of the variance in larval 
number, and the effect of upwelling on larval number was not 
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Fig. 1. Mean annual northern anchovy larval number for 1951-90 versus: (A) mean temperature at 10 m depth; (B) mean annual up- 
welling index; and (C) total anchovy biomass. 
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Fig. 2. Optimal empirical transformations from the ACE algorithm using larval number as the dependent variable and upwelling index 
and total anchovy biomass as the predictor variables. The shapes of the transformations are found by plotting the empirically trans- 
formed values of a variable versus their original values. The plots are for 195 1-90. (A) Mean annual anchovy larval number (this varia- 
ble is standardized in the ACE algorithm). @) Mean annual upwelling index. (C)  Total anchovy biomass. 

significant. Using the ACE algorithm for the same variables 
explained 84% of the variability in larval number. The shape 
of the optimal empirical transformations of both the dependent 
and the predictor variables from this model are presented in 
Fig. 2. As the transformations SO and ?() are conditional 
expectations empirically estimated by scatterplot smoothers, 
the iterative algorithms upon convergence return a new, trans- 
formed value for each observed value of Y or <.. The form of 
the transformation is obtained by plotting the new, trans- 
formed value of Y or $. versus the original, observed value. 
The estimated transformation of larval number is close to 
logarithmic in shape (Fig. 2A). The upwelling transformation is 
nearly dome-shaped with a maximum value around 1.5 m3 s-' 
per metre of coastline (Fig. 2B). The transformation ofthe total 
biomass is approximately linear up to a value of about 0.5 Mt, 
but no real increase occurs above this value (Fig. 2C). When 
either the upwelling or the total anchovy biomass is separately 
considered in the analysis, each explains, respectively, 24% 
and 6 1 % of the larval number variance. In each case, the shape 
of the transformations (figures not presented) is similar to 
that obtained when both variables are incorporated into the 
analysis. In the same way, considering separately biomass 

below and above 0.5 Mt gives similar transformations for the 
upwelling index. Identical results were obtained using AVAS 
(the plots are not presented here because they are similar in 
shape and the amount of explained variance is the same). 
Figure 3 presents the optimal empirical transformations from 
the GAIM algorithm using the logarithm of larval number as 
the response variable to make the results compatible with the 
previous results obtained with ACE (the GAIM algorithm only 
transforms the X variables). The F is equal to 74%. The 
estimated fit for the transformed anchovy biomass values 
(Fig. 3A) is close to the transformation obtained using the 
ACE algorithm (Fig. 2C). The GAIM algorithm produces a 
smoother dome-shaped relationship for upwelling, in part due 
to the degrees of freedom used in the smoothing algorithm 
(Fig. 3B). 

Estimating a generalized additive model for anchovy larval 
number, adult biomass, and upwelling can be viewed as an 
attempt, under additive restrictions, to empirically transform 
the three-dimensional surface formed from these observations 
so that the relationships between them become nearly linear. 
An interpolated estimate of the three-dimensional surface 
of the original data, using distance-weighted least squares 
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Fig. 3. Smooth fit, pointwise 2x standard error curves and partial residuals for the upwelling index and 
the total anchovy biomass using the GAIM algorithm. The logarithm of larval number was used as the 
dependent variable. The shapes of the transformations are found by plotting the empirically transformed 
values of a variable versus their original values. The plots are for 195 1-90. (A) Mean annual upwelling 
index. (€3) Total anchovy biomass. 
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Fig. 4. Interpolated three-dimensionalwrfaces (using distance-weighted least squares) and the location 
of the actual values (squares). (A) Ofiginal data (larval number versus upwelling index and total ancho- 
vy biomass). This interpolated three dimensional surface shows similar nonlinear relationships between 
larval number and upwelling index, and also larval number and anchovy biomass as obtained from the 
ACE algorithm. (B) Empirically transformed data obtained from the ACE algorithm. The algorithm has 
successfully transformed the three vafiables so that the relationships between them is nearly linear. 
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(Fig. 4A), shows the dome-like relationship between larval 
number and upwelling, as well as the asymptotic relationship 
between larval number and adult biomass. The interpolated 
estimate of the three-dimensional surface for the transformed 
valules of the observations is nearly linear in all directions, 
which shows that the data have been successfully transformed 
so that the relationships are linear (Fig. 4B). 

Discussion 
Our results suggest that the larval anchovy number in the 
California Current has a dome-shaped relationship with 
upwelling and an asymptotic relationship with total biomass. 
Recent theories and hypotheses provide an interpretation of 
these results. In the present case, the abundance of larvae 
appears to be more related to the physical processes associated 
with upwelling than to direct effects of temperature. Indeed, 
this apparent absence of a relationship between larval number 
and temperature conforms to recent suggestions that variations 
in surface temperature are likely to have minor net effects on 
early life history survival (Pepin 1991). The graphical results 
suggest that larval number should be modeled on a log scale, 
indicating that the effects of the predictor variables are on a 
proportional rather than on an absolute basis. Density depend- 
ence, often invoked in fish population dynamics, appears to be 
nonlinear with a strong asymptotic effect on larval abundance 
at high biomass levels. 

Various studies have identified both negative and positive 
effects of environmental factors on production and survival of 
larvae. Food production (Cushing 1990; Wroblewski and 
Richman 1987) and small-scale turbulence that increases the 
encounter rate between food particles and larvae (Rothschild 
and Osborn 1988; MacKenzie and Leggett 1991) are thought 
to be beneficial to larval survival. Food production may also 
benefit adult nutrition and therefore larval production (Smith 
and Eppley 1982). In contrast, intense wind-driven turbulent 
mixing that disaggregates patches of larval food appears to be 
detrimental (Lasker 1975; Peterman and Bradford 1987). It is 
also possible that destruction of food patches may alter adult 
nutrition. In addition, offshore transport that displaces larvae 
from favorable coastal areas appears to be a detrimental factor 
(Parrish et al. 1981). 

For the northern anchovy, the relationship between larval 
number and upwelling intensity is dome shaped, suggesting 
that upwelling can be either beneficial or detrimental, depending 
on its intensity. Abundance of surviving larvae increases from 
low to moderate upwelling intensity, possibly because of the 
beneficial effect of increased food production and contact 
rates. It decreases for strong upwelling, possibly due to offshore 
transport and wind-driven turbulent mixing. Optimal condi- 
tions for a high number of surviving larvae correspond there- 
fore to moderate upwelling intensity. These results are in 
striking conformity to other studies that have indicated that 
larval survival and recruitment success are regulated by a 
combination of different factors, each of which may depend in 
some way on upwelling intensity, rather than a single key 
factor (Therriault and Platt 1981; Husby and Nelson 1982; 
Wroblewski et al. 1989; Cury and Roy 1989; Roy et al. 1992). 

To maintain, over decades, the homogeneity of environ- 
mental and ecological time series is clearly a difficult task. 

affected the consistency of the time series we use in the 
present analysis. As noted in the introduction, changes in the 
procedure used to produce the pressure fields have occurred 
since 1946: three different techniques have been used to 
estimate the total biomass of the northern anchovy and the 
samplilng frequency of the larval number has also changed 
through time. How it may affect our present analysis remains 
an open question. 

Drastic fish population changes that take place within 
decades in many ecosystems are a social and economic 
challenge for fisheries (Glantz and Thompson 198 1; Cury and 
Roy 199 1) and of crucial interest for fish population modeling 
(Steele and Henderson 1984). Through modern electronic 
computation, new statistical methods permit exploration of 
nonlinear relationships between environmental changes and 
population responses. In ecology, these recently developed 
tools (Efron and Tibshirani 1991) are providing new insights 
and are refreshing our views of population dynamics 
(Mendelssohn and Cury 1987; Cury and Roy 1989; S w a r t "  
et al. 1992). However, detecting nonlinear environmental 
effects on population dynamics remains a challenge for several 
reasons: 

1) Several decades of data are sometimes available at diff- 
erent time scales but usually summarized to annual values, 
thereby only giving a few data points for the analysis. This 
is an important limitation because much more data are 
needed when exploring nonlinear relationships. 

2) Collecting environmental and ecological data in an eco- 
system during several decades is a long and exacting task. 
Regular financial support is difficult to find for these long- 
term projects. 

3) The homogeneity of the time series over several decades 
is often questionable; analytical and methodological 
changes may affect their quality. 

4) Our lack of understanding of causal mechanisms leads to 
an empirical choice between several variables; this choice 
may or may not be relevant to the population dynamics. 

5) Low rather than high correlations are expected between 
climate variability and fish population responses, making 
definite relationships hard to establish. 

Thus, caution should be added to optimism when exploring 
nonlinearities in fish population dynamics. 

Over the past several decades, the stable global marine fish 
catch may have tended to mask the fact that the clupeoid 
contribution, which previously represented about one half of 
the marine fish catch in the upwelling areas, has now declined 
to only one third (Smith 1985). Recently it was suggested that 
the major coastal upwelling systems of the world have been 
increasing in upwelling intensity as greenhouse gases have 
accumulated in the earth's atmosphere ( B a h  1990). Our 
results suggestthatthe future ofpelagic fish stocks will depend 
both on exploitation rates by fisheries and on climatic changes. 
Population fluctuations are not related in a linear manner to the 
density dependent and independent factors. Moderate 
upwelling intensity is better for larval survival. Thus, even if . climatic changes are gradual and monotonic, the response of 
marine resource populations should not be expected t9 have 
the same well-behaved character. In that case. trend extrano- 

' 

Analytical and methodological changes have certainly lation may yield misleading predictions. 
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