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A Nonstationary Negative Binomial Time
Series with Time-Dependent Covariates:
Enterococcus Counts in Boston Harbor

E. Andres Houseman, Brent Coull, and James P. Shine

Abstract

Boston Harbor has had a history of poor water quality, including contamination
by enteric pathogens. We conduct a statistical analysis of data collected by the
Massachusetts Water Resources Authority (MWRA) between 1996 and 2002 to
evaluate the effects of court-mandated improvements in sewage treatment. Moti-
vated by the ineffectiveness of standard Poisson mixture models and their zero-
inflated counterparts, we propose a new negative binomial model for time series
of Enterococcus counts in Boston Harbor, where nonstationarity and autocorrela-
tion are modeled using a nonparametric smooth function of time in the predictor.
Without further restrictions, this function is not identifiable in the presence of
time-dependent covariates; consequently we use a basis orthogonal to the space
spanned by the covariates and use penalized quasi-likelihood (PQL) for estima-
tion. We conclude that Enterococcus counts were greatly reduced near the Nut
Island Treatment Plant (NITP) outfalls following the transfer of wastewaters from
NITP to the Deer Island Treatment Plant (DITP) and that the transfer of wastew-
aters from Boston Harbor to the offshore diffusers in Massachusetts Bay reduced
the Enterococcus counts near the DITP outfalls.
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Abstract

Boston Harbor has had a history of poor water quality, including contamination by enteric pathogens.
We conduct a statistical analysis of data collected by the Massachusetts Water Resources Authority
(MWRA) between 1996 and 2002 to evaluate the effects of court-mandated improvements in sewage
treatment. Motivated by the ineffectiveness of standard Poisson mixture models and their zero-inflated
counterparts, we propose a new negative binomial model for time series of Enterococcus counts in Boston
Harbor, where nonstationarity and autocorrelation are modeled using a nonparametric smooth function
of time in the predictor. Without further restrictions, this function is not identifiable in the presence of
time-dependent covariates; consequently we use a basis orthogonal to the space spanned by the covari-
ates and use penalized quasi-likelihood (PQL) for estimation. We conclude that Enterococcus counts
were greatly reduced near the Nut Island Treatment Plant (NITP) outfalls following the transfer of
wastewaters from NITP to the Deer Island Treatment Plant (DITP) and that the transfer of wastewa-
ters from Boston Harbor to the offshore diffusers in Massachusetts Bay reduced the Enterococcus counts
near the DITP outfalls.
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1 Introduction

1.1 Background

Boston Harbor is a shallow marine estuary that has been a receptacle of both domestic

and industrial wastes for hundreds of years. By the latter part of the twentieth century,

decades of direct contaminant input from poorly treated sewage effluent and sewage sludge,

combined with non-point inputs from storm water discharges and daily combined sewer over-

flows, resulted in such poor water quality that Boston Harbor was characterized as the most

polluted harbor in the United States, nicknamed the “Harbor of Shame” (McGonagle and

Otski, 1997; MacDonald, 1991). In 1985, in response to a class-action suit and a mandated

federal court-order to clean the Harbor on a 13 year schedule, the state of Massachusetts

created the Massachusetts Water Resources Authority (MWRA). The MWRA assumed re-

sponsibility for water and sewer systems in the Boston metropolitan area, serving 2.5 million

people and 5500 industrial sources in 61 communities (Massachusetts Water Resources Au-

thority, 2004). With respect to sewage, the MWRA operated two sewage treatment plants

that discharged directly into Boston Harbor: the Nut Island Treatment Plant (NITP) and

the Deer Island Treatment Plant (DITP). As late as 1999, the last year that sewage was

discharged directly into the Harbor, the volume of sewage discharged through the MWRA’s

treatment plants compromised approximately 50% of the freshwater entering the Harbor,

matching the combined contribution of freshwater from other sources such as the Charles,

Mystic, and Neponsett Rivers (United States Geological Survey, 2004). In response to the

federally mandated clean-up, the MWRA spent approximately 3.8 billion dollars to upgrade

the quality of sewage treatment; a major portion of the project included diversion of the

sewage outfall from direct discharge into the Harbor to a series of outfall diffusers located

15 km offshore in nearby Massachusetts Bay (McGonagle and Otski, 1997). A large frac-
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tion of the clean-up costs were passed on to the local citizens, whose water rates became

amongst the highest in the nation. Several events were significant in the subsequent history

of Boston wastewater treatment. In 1991, the discharge of sewage sludge into the Harbor

was completely halted. In 1998, flows from the Nut Island Treatment Plant ceased and

all wastewater flows were transferred to the Deer Island Treatment Plant. A third major

event occurred in September 2000 with the relocation of DITP outfalls from within Boston

Harbor to the new offshore diffusers (Taylor, 2001, 2002, 2003). Figure 1 depicts DITP and

NITP effluent flow, in millions of gallons per day (MGD), between 1996 and 2002.

It is well-known that the cessation of sludge input and an improved level of sewage

treatment resulted in a decreasing trend in the loading of toxic chemicals to the Boston

Harbor throughout the 1990’s. This is reflected in decreasing concentrations of compounds

such as heavy metals in the surface sediments (Zago et al., 2001). However, it is less clear

how the Boston Harbor project affected the levels of pathogenic micro-organisms. Although

poorly treated sewage can be a source of pathogens to the Harbor, previous studies have

indicated that a large source of pathogens to the Harbor may have been through discharges

via combined sewer overflows and storm drains (Ellis and Rosen, 2001). The presence of

these enteric pathogens in the water can make the beaches unfit for recreation and the

fish unsafe to consume. It is possible therefore, that although the $3.8 billion expenditure

improved the level of sewage treatment and re-routed the effluent offshore, that the waters

of Boston Harbor remained unfit for humans as both a recreational or fisheries resource.

Throughout the 1990’s and early 2000’s, the MWRA monitored a large number of water

quality parameters throughout the Harbor. In particular, the MWRA has measured Ente-

rococcus counts at 23 stations, illustrated in Figure 2, throughout Boston Harbor between

1995 and 2002. Enterococcus is an indicator bacterium correlated with the presence of

other pathogenic bacteria and viruses, and is associated with an elevated risk of swimming-
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related illnesses (Cabelli et al., 1979; Cabelli, 1982; Cabelli et al., 1982, 1983). Enterococcus

counts, measured in colonies per 100 ml (in 5 colony increments), were typically collected

every ten to fourteen days between 1995 and 2002. The time domain over which samples

were collected generally depended on the station sampled, as did exact sampling frequency.

Reported values consist of averages of replicate laboratory analyses, with acceptable preci-

sion calculated using Method 9020 B 4 of Standard Methods (APHA et al., 1995). Details

are described in Tilton et al. (1998) and Margolin et al. (2002). We note that explicit

laboratory recovery rates for Enterococcus were not measured. Inferences about time ef-

fects make the assumption that method differences in recovery rate had negligible effect on

Enterococcus count. Table 1 presents a summary of the data collected during this period.

Figure 3 depicts Enterococcus counts (in colonies per 20 ml) over time at Station 82, which

is near NITP, and at Station 160, near DITP.

The primary goal of this article is the quantification of the effects of two of the important

milestones described above, the cessation of flows from NITP in 1998 and the relocation of

the DITP outfalls in 2000. These are of interest from a regulatory and policy perspective.

Also of interest is characterizing the distribution to a degree sufficient for prediction, as

such data are useful in the context of decision modeling for policy. For example, there is an

interest in accurately predicting levels of Enterococcus at beaches to inform beach closures

for reasons of public health (Morrison et al., 2003).

1.2 Statistical Methodology

The statistical analysis of the water pathogen time series presents several challenges. First,

the counts do not apparently follow a standard distribution. The counts are clearly overdis-

persed relative to the Poisson distribution, as Figure 3 demonstrates. However, they also

exhibit a high proportion of zero counts. Consequently, lognormal approximation to the dis-
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tribution is inadequate, as can be shown by methods proposed by Houseman et al. (2004).

This remains true even when models that account for zero-inflation are considered. Second,

an important aspect of the data is the nonstationarity of both the outcomes and the ef-

fects of interest. Failing to address nonstationarity complicates the characterization of the

underlying probability distribution. Moreover, as we demonstrate in Section 4, misleading

inference may result if the time-dependence of the effects of interest in the context of the

nonstationary outcomes is not taken into account.

Considerable work has been done in the area of time series for counts. Cox (1981) classi-

fied time-series models for serially-correlated data into two classes: observation-driven and

parameter-driven. Observation-driven models specify the conditional distribution of a re-

sponse at time t as a function of past responses; in contrast, parameter-driven models specify

an underlying serially correlated latent process. Examples of parameter-driven (state-space)

models include Zeger (1988), who developed a quasi-likelihood approach derived from a

latent process assumption, and Kelsall et al. (1999), who proposed a frequency-domain ap-

proach. Other parameter-driven methods appear in a Bayesian context (e.g. Durbin and

Koopman, 1997, 2000; Crainiceanu et al., 2003). Examples of observation-driven models

include those proposed by Zeger and Qaqish (1998), who proposed a Markov approach, and

Brumback et al. (2000), who condition a mean response on past observations. The general-

ized autoregressive moving average (GARMA) approach proposed by Benjamin et al. (2003)

is similar but more general. Benjamin et al. (2003) provides an excellent overview of the

history of time series for counts.

Although theory exists for irregularly spaced observations (Omori, 2003), which are com-

mon in environmental applications, many existing methods are difficult to adapt to such

irregularity. This is particularly true of observation-driven methods, since some of the his-

torical observations are essentially missing. Consequently, recent approaches to time series

5
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data in environmental applications use a semiparametric approach, where a nonparametric

time effect is included in the mean (Samoli et al., 2001; Coull et al., 2001). The advantage of

such an approach is that it more flexibly models nonstationarity in the time effect. Recent

semiparametric approaches to count data include Hunsberger et al. (2002), who applied

locally-weighted scatterplot smoothing to Poisson time series, and Thurston et al. (2000),

who proposed a semiparametric model for negative-binomial counts. The latter authors

used locally-weighted scatterplot smoothing, and did not consider time series. In addition,

they did not focus on selection of the bandwidth tuning parameter.

We found existing time series models for counts inadequate for the MWRA Enterococ-

cus data. The frequency-domain methodology proposed by Kelsall et al. (1999) requires

stationary outcomes, so is not easily adapted to Boston Harbor pathogen data. Originally,

we applied the methods of Zeger (1988) to the Enterococcus data set, but found that the

high proportion of zero counts, combined with spikes, resulted in estimating equations that

were so ill-conditioned that reliable estimates could not be obtained. We also explored

Bayesian fitting of the Poisson-lognormal model described in Crainiceanu et al. (2002) and

Crainiceanu et al. (2003), but for our problem we found the mixing properties of the result-

ing MCMC chain to be poor even after extended computation time (about 12 hours on a 3.2

MHz PC for a single station) and using recommended methods to improve mixing. Finally,

we considered several zero-inflation models (e.g. Lambert, 1992) and their time-series ex-

tensions (Wang, 2001) but ultimately decided against these approaches for reasons outlined

in Min and Agresti (2005). First, zero-inflated models require that the data be zero inflated

at every level of the covariates, which may not always be realistic. Violation of this assump-

tion can yield unstable estimates, even in the presence of marginal zero-inflation. Second,

the parameters are difficult to interpret, as one must distinguish whether an effect relates

to a change in the probability of a zero count or to the mean count, given that the count
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arises from the Poisson component of the model. Nevertheless, despite the drawbacks, we

fit zero-inflated Poisson and zero-inflated negative binomial models to the Boston Harbor

data. Our results mimicked the phenomena described by Min and Agresti (2005), with

estimates proving unstable, as judged by the rank of the observed information matrix.

To address the limitations of existing approaches in the context of the MWRA data

analysis, we propose a time series model for overdispersed count data in situations in which

interest focuses on time-dependent covariates. Our model assumes negative binomial out-

comes and employs a nonparametric, smooth function f(t) to model simultaneously serial

autocorrelation and zero-inflation, using the mixed-model approach proposed by Brumback

et al. (1999) to select the tuning parameter. Our approach is related to that proposed in

Thurston et al. (2000). However, the presence of smooth covariate processes complicates

the analysis, leading to nonidentifiability of regression parameters unless basis functions

are specified properly. As a result, we propose an approach that assumes a smooth resid-

ual process that is orthogonal to the known covariate processes. In addition, we provide

methodology for standard errors that are robust to time-dependent dispersion.

Our paper is organized as follows. In Section 2, we describe our model in detail, discuss

the identifiability of f(t), motivate a basis for the space in which f(t) should lie, and de-

scribe a penalized quasi-likelihood (PQL) approach to estimation. In addition, we propose

procedures for robust standard error estimation, for goodness-of-fit and for spatial summa-

rization. In Section 3 we use our model for hypothesis testing from data collected at four

stations in Boston Harbor, and present a summary of an analysis of the nineteen remaining

stations. We conclude with some closing remarks in Section 4.
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2 Semiparametric Negative Binomial Model for Time Series

In this section we describe a statistical model for a time series of pathogen counts. Section

2.1 proposes the basic model, a negative-binomial outcome whose mean contains both a

parametric specification, including time-dependent covariates, and a nonparametric time

effect f(t). In Section 2.2, we discuss identifiability of f in the presence of smooth covariate

processes, and motivate a basis, orthogonal to the space spanned by the covariate processes,

for the space in which f is assumed to lie. In Section 2.3 we briefly compare the negative-

binomial model to the Poisson and zero-inflated Poisson models, demonstrating that in this

context the Poisson model may not be sufficiently rich to model both autocorrelation and

overdispersion, and that the negative-binomial model can accommodate zero-inflation. In

Section 2.4, we discuss estimation and inference for the semiparametric negative binomial

model. In Section 2.5 we describe how to obtain standard errors for the mean parameters

that are robust to time-dependent overdispersion. In Section 2.6, we discuss goodness-of-

fit. Finally, in Section 2.7 we describe the construction of a spatial summary of estimates

obtained at different stations.

2.1 Negative Binomial Time Series with Time-Dependent Covariates

Fix a time interval T = [t0, t1] and let L = t1 − t0. To simplify notation, we assume,

without loss of generality, that t0 = 0 and t1 = L. For t ∈ T , assume Yt|Qt
iid∼ Po(Qtµt),

where Qt
iid∼ Ga(σ−1, σ−1), µt = exp[x′tβ + f(t)], xt ∈ Rp, and the unknown function f is a

member of H, a Hilbert space of functions T → R with square integrable second derivative.

Thus, Yt is an overdispersed Poisson variable, with the overdispersion introduced through

a Gamma variable Qt having mean one and variance σ. This is equivalent to a negative
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binomial model for Yt:

P (Yt = y|µt) =
Γ(y + σ−1)

Γ(σ−1)Γ(y + 1)

(
1

1 + µtσ

)σ−1 (
µt

µt + σ−1

)y
. (1)

We further assume that there is a subset J ⊂ {1, ..., p} corresponding to J time-dependent

covariates, where for each j ∈ J , xtj = uj(t), and uj ∈ H. Finally, assume that for a finite

set of size n, T ∗ ⊂ T , we observe (Yt,x
′
t)
′ for every t ∈ T ∗. We impose an assumption that

the Yt are missing completely at random, i.e. conditional on covariates, the probability that

t ∈ T ∗ does not depend on {Yt}t∈T . This assumption is reasonable for the Boston Harbor

data, since sampling schedules were constructed independent of anticipated count levels.

The flows depicted in Figure 1, which are apparently smooth curves combined with noise,

motivate our interest in time-dependent effects. We are not directly interested in estimating

uj, but the fact that uj is time-dependent has implications for estimating f , particularly

when the parametric effects of xtj are of interest. In Section 2.2, we motivate further

restrictions on the function f in order to identify f in the presence of the smooth covariate

processes uj.

2.2 Indentifiability

The model proposed in Section 2.1 is not identifiable. For a fixed j ∈ J ,

β0 + βjuj(t) + f(t) = β0 + (βj + γ)uj(t) + [f(t)− γuj(t)], (2)

which produces the same distribution for every γ ∈ R. Even if there are stationary zero-

mean errors etj such that xtj = uj(t) + etj, the model still has poor properties when etj is

small relative to uj(t), since xtj will still be highly collinear with the space of admissible

functions f .

Identifiability can be obtained by restricting f(t) to lie in a space H1 of smooth functions

that are orthogonal to the subspace H0 spanned by all J of the functions uj(t). By standard
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Hilbert space properties, H0 ⊥ H1 ensures a unique factorization of the smooth portion of

log(µt) into
∑

j∈J βjuj ∈ H0 and f ∈ H1. A basis representation for H1 can easily be

obtained from a standard basis for H, such as the B-spline basis (Ramsay and Silverman,

1997, page 49), by Gram-Schmidt orthogonalization. Note that such a procedure depends

critically on the definition of an appropriate inner product 〈·, ·〉, which for square integrable

functions is usually defined as 〈g1, g2〉 =
∫ L

0
g1(t)g2(t)dt.

In particular, suppose H ⊃ H0 is a Hilbert space for which f is assumed to lie in the

linear complement H1 = H−H0, and that all members of H are expressed through a finite-

dimensional basis expansion g(t) =
∑K

k=1 bkz̃k(t) = b′z̃t, where z̃′t = [z̃1(t), ..., z̃K(t)] is a

vector of spline functions evaluated at t. Then there is a (K − J)×K matrix P such that

Pz̃t is a finite-dimensional basis approximating H1. Thus, arbitrary members of H1 can be

expanded as a′P′z̃t. We denote the orthogonal basis obtained from z̃t as zt = P′z̃t.

In functional data analysis problems such as this one, reduction of the infinite dimen-

sional problem to finite dimensions typically involves regularization, where estimation in-

volves a penalty such as the square-integral of the second derivative. In Section 2.4 we

describe an estimation procedure that imposes regularization by penalizing solutions for

which
∫ L

0
|∂2f/∂t2|2dt is large. The “roughness penalty” simplifies to a quadratic form

q(a;λ) = λa′Da (Ramsay and Silverman, 1997, Chapter 4), where λ is a tuning parameter

and D is a “penalty matrix”. The fda package written by J. Ramsay for the R statisti-

cal software environment (R Development Core Team, 2004) provides the B-spline basis

representation of functions, as well as support for inner product computations and the reg-

ularization penalty b′D̃b obtained by integrating the square of the second derivatives of the

B-spline basis functions. It is straightforward to show that, for members of H1 represented

by the basis z, the corresponding penalty matrix is D = PD̃P′. Consequently, once P has

been computed, the penalty matrix for regularizing members of H1 can be obtained from
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standard software such as fda. Note that the nullspace of D̃ includes vectors that represent

multiples of the identity function id(t) ≡ t, so D̃ is singular; however, if there is at least one

smooth covariate uj such that 〈uj, id〉 6= 0, then D = PD̃P′ will be nonsingular.

In practice, we select the tuning parameter λ using the mixed-model formulation proposed

by Brumback et al. (1999). The quadratic form of the roughness penalty q(a;λ) = λa′Da

suggests that f(t) can be described as a stochastic process generated by considering the

spline coefficients as random effects a ∼ N(0, τ 2D−1), where 2τ 2 = λ−1. In this formulation,

“rough” elements of H1 have small probability of arising. Thus, our final model is a negative

binomial mixed model, closely related to the mixed model proposed by Booth et al. (2003).

As described by Brumback et al. (1999), our proposed formulation facilitates a natural

method for selecting the tuning parameter λ. We discuss additional details of estimation

and inference in Sections 2.4, 2.5 and 2.7. For the remainder of this article, we assume that

f(t) = z′ta and that

log(µt) = x′tβ + z′ta. (3)

Finally, we note that, even when f ∈ H is unconstrained and is thus unidentifiable,

the penalized likelihood still produces a solution. However, the solution is not the same as

that obtained under the orthogonality constraint. To see this, we concentrate on a single

time-dependent covariate βj and express equation (2) in terms of basis expansions:

β0 + βjz
′
tcj + z′ta = β0 + z′t(βj + γcj) + z′t[a− γcj],

where f(t) = z′ta and uj(t) = z′tcj. If we assume that βj and a are identified by the orthogo-

nality constraint, then γ must be zero. However, in the unconstrained setting, the likelihood

is determined only up to values of γ, and the likelihood is therefore singular. The penalty,

whose general form is λ(a − γcj)
′D(a − γcj), renders the penalized likelihood nonsingular

and we are able to obtain a solution. Since the likelihood contains no information about γ,
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the solution will minimize the penalty at γ = a′Dcj/c
′
jDcj 6= 0. Consequently, the solu-

tion obtained by the unconstrained problem differs from that obtained by the constrained

problem. We illustrate this phenomenon in Section 4.

2.3 Comparison with Poisson Regression

Poisson models are often preferred over negative binomial models, since the negative bino-

mial distribution is an exponential family only when σ is fixed. However, when counts are

extremely overdispersed, the Poisson-gamma model is more realistic. Note that marginaliz-

ing over the random effects a in (3) induces overdispersion even in the Poisson case, σ = 0:

Var (Yt) = exp

(
ηt +

τ 2

2
z′tD

−1zt

)
+ exp

(
2ηt + τ 2z′tD

−1zt
) [

(σ + 1) exp
(
τ 2z′tD

−1zt
)
− 1
]
,

where ηt = x′tβ. The term exp (2ηt + τ 2z′tD
−1zt) [exp (τ 2z′tD

−1zt)− 1] is analogous to the

overdispersion of a Poisson-lognormal distribution. However, for both Poisson and negative

binomial models, the covariance has the same form:

Cov (Ys, Yt) = exp

(
ηs + ηt +

τ 2

2
z′sD

−1zs +
τ 2

2
z′tD

−1zt

)[
exp(τ 2z′sD

−1zt)− 1
]
. (4)

Thus, for Poisson regression, overdispersion and autocorrelation are both determined by

τ 2, but the negative binomial model includes an additional degree-of-freedom, σ > 0, al-

lowing for a richer combination of autocorrelation and overdispersion. Although a Poisson-

lognormal model would also provide a similarly rich space of models, the probability mass

function of the Poisson-lognormal distribution does not have a closed form. Thus, the com-

putational difficulties involved in implementing a Poisson-normal model motivate a prefer-

ence for the negative binomial distribution.

Note that the semiparametric negative binomial model described in Section 2.1 accom-

modates zero inflation. From (1),

P (Yt = 0|xt) = (1 + σµt)
−1/σ = {1 + σ exp[x′tβ + f(t)]}−1/σ.
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Thus, the probability of observing zero increases with σ and decreases with the Poisson

mean µt. A run of pure zeros corresponds to small values of f(t), while a time interval in

which zeros alternate with spikes corresponds to a large value of σ combined with a moderate

value of µt. Consequently, zero inflation is modeled in an integrated fashion that does not

suffer from the stability and interpretation problems experienced with explicit zero-inflation

models, as described by Min and Agresti (2005) and reviewed in Section 1. Note that a

zero-inflated Poisson model is essentially a Poisson-binomial mixture, and is therefore, in a

sense, less general than a Poisson-gamma mixture.

2.4 Estimation and Inference

The full mixed-model formulation described in Section 2.2 involves a likelihood containing

an intractible integral:

P (Yt = y) =

∫
R2K

P (Yt = y|µt(a)) da

=
(2πτ 2)−KΓ(y + σ−1)

Γ(σ−1)Γ(y + 1)
×∫

R2K

(
1

1 + σµt(a)

)σ−1 (
µt(a)

µt(a) + σ−1

)y
exp

(
− 1

2τ 2
a′Da

)
da,

where µt(a) expresses the dependence of µt on the realized random effects vector a. Fol-

lowing Breslow and Clayton (1993), a Laplace approximation can be used to obtain an

approximate solution. Such an approach has been demonstrated to work well in smoothing

applications (Hobert and Wand, 2000), and in particular overdispersed Poisson smoothing

(Wager et al., 2004). Note that the approximation is only necessary for estimating the

tuning parameter τ 2; assuming τ 2 is known, the methods of Thurston et al. (2000) can be

used to estimate β, σ, and a subject to a penalty constraint a′Da ≤ C(τ 2). This constraint

is equivalent to maximizing a likelihood with an additional penalty term, −2−1τ−2a′Da. In

addition, for proper choice of D, the constraint can be interpreted as a roughness penalty
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as measured by the square-integral of the second derivative of the function f(t) (Ramsay

and Silverman, 1997, Chapter 4). For fixed σ, iteratively reweighted least squares (IRLS)

can be used to solve the corresponding score equation for β and a:

Uµ(β, a;σ, τ 2) = τ−2Da +
∑
t∈T ∗

(
Yt − µt(a)

1 + µt(a)σ

)
wt = 0. (5)

where w′t = (x′t, z
′
t). Assuming β and a are known, maximum likelihood (ML) can be used

to obtain an estimate for σ. The corresponding score equation is

Uσ(σ;β, a, τ 2) = 0, (6)

where Uσ(σ;β, a, τ 2) is equal to

σ−1
∑
t∈T ∗

[
ψ1(σ−1 + Yt)− ψ1(σ−1)− log(1 + µt(a)σ)

]
+
∑
t∈T ∗

[
σµt(a)Yt + µt(a)

1 + µt(a)σ
− Yt

]
,

and the digamma function ψ1(u) is the first derivative of log[Γ(u)]. For a fixed value τ 2, the

Laplace approximation Lτ to the log-likelihood involves solving (5) and (6) for β̂, â and σ̂,

and computing

Lτ (τ
2; β̂, â, σ̂) = C̃(β̂, â, σ̂)− 1

2τ 2
â′Dâ−K log(τ 2)− 1

2
log
∣∣W′ΩW + τ−2D

∣∣ , (7)

where W = (wt1 , ...,wtn)′ is the matrix of covariates and basis vectors, C̃(β̂, â, σ̂), a nor-

malization constant plus the sum of the natural logarithms of (1) computed for each t ∈ T ∗,

is independent of τ 2, and Ω is a diagonal n × n matrix of IRLS weights. The weights

are computed as Ωtt = µ̂t(â)(1 + µ̂t(â)σ̂)−1, where the ith diagonal element of Ω is repre-

sented as Ωtiti . Thus τ̂ 2 is obtained by maximizing (7). The procedure obtained by solving

(5), solving (6), maximizing (7), and iterating until convergence, produces the penalized

quasi-likelihood (PQL) estimate proposed by Breslow and Clayton (1993) for the negative

binomial distribution.

Estimation of the variance of parameter estimates follows from the standard quasi-

likelihood theoretical development of Breslow and Clayton (1993). In particular, conditional

14

http://biostats.bepress.com/harvardbiostat/paper17



on τ 2, the variance of θ̂ = (β̂
′
, â′)′ is approximated as

Cov
(
θ̂
)
≈ (W′ΩW + τ−2D)−1W′ΩW(W′ΩW + τ−2D)−1. (8)

Wald-type inference for linear combinations of β̂ are easily obtained from (8). In addition,

the estimator σ̂ is asymptotically uncorrelated with θ̂ and its variance can be estimated as

the inverse of the derivative of Uσ in (6). We emphasize, however, that all such Wald-type

inference based on the approximation (8) is conditional on τ̂ 2. We view this as an acceptable

and useful approximation, given that the asymptotic theory for penalized regression splines

has not yet been fully developed (Ruppert et al., 2003; Crainiceanu and Ruppert, 2004).

We close this section with a comment on model degrees-of-freedom, which in semipara-

metric regression is an important tool for comparing the complexity of different models.

In analogy with ordinary least squares, it is defined as the rank of the smoother matrix,

which is a linear transformation that maps an outcome vector to its corresponding predic-

tor. In the generalized linear model setting, this is the rank of the corresponding matrix for

the working residuals. In our context, the methods of Ruppert et al. (2003, Section 3.13)

produce

df = trace
[
W(W′ΩW + τ−2D)−1W′Ω

]
= trace

[
(W′ΩW + τ−2D)−1W′ΩW

]
.

2.5 Time-Dependent Overdispersion

Equation (1) assumes a constant overdispersion parameter σ. However, time-dependent

overdispersion is possible, in which case σt would be substituted for σ in (1). Incorporating

an additional smooth term σt = s(t) in (1) would vastly increase the complexity of the

computation; in addition, it could lead to stability problems, as Brumback et al. (2000)

have suggested in a similar context.

Estimation of mean parameters β and a is robust to time-dependent overdispersion,
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since estimating equation (5) is unbiased for β and a, aside from the τ−2Da term necessary

for regularized estimation of f(t). However, a remaining problem is that standard error

estimates arising from (8) will be incorrect.

We employ methods analogous to those outlined in Brumback et al. (2000) for computing

standard errors robust to time-varying overdispersion. Let Rt = (Yt−µ̂t)2/(µ̂t+µ̂
2
t σ̂), where

µ̂t and σ̂ are obtained as in Section 2.4. If the model is correctly specified, E [Rt] = 1;

otherwise,

E [Rt] =
µt + µ2

tσt
µ̂t + µ̂2

t σ̂
= h(t). (9)

Assuming h(t) is a smooth function, a standard generalized additive model (GAM, Hastie

and Tibshirani, 1990) can be employed to obtain an estimate ĥ(t), which then serves as an

estimate of the left hand side of (9). The appropriately adjusted IRLS weight Ω∗tt is then

computed as

Ω∗tt =
µ̂2
t

µ̂t + µ̂2
t σ̂t

=
µ̂2
t

(µ̂t + µ̂2
t σ̂)ĥ(t)

= [ĥ(t)]−1Ωtt.

Robust standard errors are obtained by substituting Ω∗, the matrix of IRLS weights Ω∗tt, in

place of Ω in (8).

The standard chi-square test used in the GAM setting to test a smooth effect can be

employed to test a null hypothesis of time-independent overdispersion. For if the overdis-

persion has no time dependence, then h(t) ≡ 1, in which case the chi-square test should fail

to reject the null hypothesis of a constant smooth effect. Since E [Rt] > 0, a logarithm link

function for fitting the GAM seems reasonable. That is, h(t) is assumed to be the exponent

of a smooth real process. Since Rt can be quite skewed, a reasonable variance function for

fitting h(t) is E [Rt]
2, corresponding to a Gamma distribution; thus, residuals having large

expectation are down-weighted considerably.
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2.6 Goodness-of-Fit

A common method of assessing fit is the deviance statistic, which is based on a likelihood

ratio test that compares the target model with the “saturated” model in which each outcome

is its own prediction (Ruppert et al., 2003, Chapter 4). For the negative binomial model

(1), the deviance, which we denote G, is

G = 2L̃− 2L(τ̂ 2; β̂, â, σ̂) = 2
∑
t∈T ∗

Gt − 2K log(τ 2)− log
∣∣W′ΩW + τ−2D

∣∣ , (10)

where L̃ is the log-likelihood for the saturated model, computed with µt(a) = Yt, a = 0,

σ = σ̂, and τ 2 = 0, and

Gt = Yt log Yt − Yt − Yt log µ̂t(â) + σ−1 log |1 + µ̂t(â)σ| .

Details of the derivation are provided in the Appendix.

An assumption of asymptotic normality might be used to motivate the approximation

G ∼ χ2
d, where d is equal to the residual smoothing degrees-of-freedom, defined by Ruppert

et al. (2003, Section 3.14). However, Crainiceanu and Ruppert (2004) have shown that nor-

mal approximations are not necessarily valid for penalized regression splines. Consequently,

Ruppert et al. (2003, Section 4.8.2) recommend simulating the null distribution of likelihood

ratio statistics, with parameters set to their true values. Thus, a large number M of data

sets {(Y (m)
t ,x′t)

′}, m ∈ {1, ...,M}, are simulated using the model described in Sections 2.1

and 2.2, with β, σ, and a set to their estimated values. The corresponding statistics G(m)

are tabulated for each such data set, using Y
(m)
t , â, β̂, σ̂ and τ̂ 2. By refitting a, β, and σ for

every m, it is possible to account for the effect of parameter estimation on the distribution

of G. Note that fitting τ 2 by (7) is the most time-consuming step of the algorithm described

in Section 2.4. However, τ 2 directly relates to the smoothness of f̂ , which is fixed in the

simulation by fixing a = â. Therefore, a reasonable approximation to the distribution of
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G is still obtained by holding τ 2 constant at τ̂ 2 for each m, with considerable savings in

computation.

The null distribution of G is taken to be the empirical distribution of G(m). For example,

the P-value is approximately M−1
∑M

m=1 1
(
G(m) > G

)
. An expression similar to (10) exists

for the assumption σ = 0 in the computation of L̃; the corresponding null distribution may

also be obtained by simulation.

2.7 Spatial Summary

Until this point we have ignored the spatial aspect of the Boston Harbor data. As described

in the Introduction, Enterococcus was sampled at 23 different locations in the harbor. Since

effects may differ considerably from site to site, we have focused the statistical methodology

on analysis of a single site at a time. Nevertheless, spatial summarization of the effects of

NITP and DITP flow are of interest. In particular, we wish to construct a map illustrating

spatial heterogeneity in the harbor.

To this end, we make use of a two-stage approach (Fitzmaurice et al., 2004, Chapter 8.4,).

At the first stage we apply the methodology described in Sections 2.4 and 2.5. For the second

stage, we fit a geoadditive model (Kammann and Wand, 2003) to effect estimates obtained

in the first stage. The geoadditive model uses thin-plate splines in the GAM setting to

model geographic effects, and corresponds to a form of generalized Kriging (Ruppert et al.,

2003, Chapter 13). Other Kriging solutions (Christensen, 1991, Chapter VI) could also be

employed. However, we wish to weight the effects β̂j by the inverse of their variances, an

operation that is much more easily accomplished using GAMs.

In this context, a spatial model can be described as follows:

βj(s) = βj0 + vj(s), (11)
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where βj(s) is the effect corresponding to element j of xt at location s, βj0 is the mean

effect, and vj(s) is a smooth function over two-dimensional location vectors s. Assuming

models (1) and (11) are correct, fitting (11) to the parameter estimates β̂js∗ from each

sampling station s∗, weighted by the inverse of their variances, produces valid estimates.

Maps showing the spatial heterogeneity of βj(s) are obtained from the estimate β̂j0 and

spatial predictions v̂j(s) over a grid of locations s in the region of interest.

3 Enterococcus Counts in Boston Harbor

We now turn to the analysis of Enterococcus counts in Boston Harbor. For brevity, we

concentrate on four representative stations: Stations 82 and 139, which are near the NITP

outfalls, and Stations 159 and 160, which are near the pre-2000 DITP outfalls. All four

of these stations were sampled every ten to fourteen days between 1995 through 2002.

Subsequently, we present summary results for all 23 stations sampled and the results of a

pooled spatial analysis. For effects involving NITP, we did not include Station 130 because

the station was sampled only after NITP flows ceased in mid-1998. All analyses were

conducted using the R software package (R Development Core Team, 2004, version 1.9.1),

including the libraries fda as described in Section 2.4 and mgcv for the GAMs described in

Section 2.5.

The Boston sewer system combines both sanitary flow and storm flow; during extreme

storm events when flow is unusually high, raw sewage can be released from combined sewer

overflows (CSOs) present on the shoreline. Thus, we expect the effects of base flow, which

reflect “normal” plant operations, to differ from the transient effects of storm overflow. This

motivates the decomposition of DITP and NITP flows into base flow (a lower envelope of

the total flow) and positive residuals whose spikes reflect storm overflow. Figure 1 depicts
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effluent flows at DITP and NITP, along with smooth curves representing base flow. The

smooth curves were obtained by fitting an unpenalized B-splines in a quantile regression

model for the 5th percentile. Seventy-four knots were used for DITP and forty-one for NITP:

eight regularly spaced knots per year were used for DITP throughout the time period studied

and for NITP up through 1997; ten knots were used for NITP in 1998, and one knot per

year thereafter. The cessation of NITP flows in mid-1998 motivated the irregular choice

of knots. Of primary interest were the base flow effects, which we consider to be smooth

processes whose indices belong to J . The transient overflow effects, of secondary interest,

were obtained as the residuals, observed flow minus the smoothed base flow. Since these

residuals varied from day to day, we did not treat them as smooth. Thus, we had four flow

covariates: the smooth base flows DITP base and NITP base and the residual flows DITP

overflow and NITP overflow.

Another covariate of interest was the effect of transferring DITP discharges from outfalls

in the harbor to the offshore diffusers in Massachusetts Bay. We represented this effect with

an indicator Mass Bay having value one for samples collected after September 6, 2000, and

zero otherwise. Strictly speaking, Mass Bay is not smooth in the sense described in Section

2.1. However, it is constant except for the singularity at September 6, 2000. Therefore, at

each station, we projected it onto the B-spline basis z̃ used to represent the function space

H, and henceforth treated it as smooth. The smooth covariates DITP base and NITP base

were also projected onto the B-spline basis z̃ after having been estimated using a different

B-spline basis.

Other nuisance covariates included temperature (in degrees Celcius), salinity (in PSU),

tide height (in meters), and a smooth seasonal effect represented by sinusoidal terms sin(2πt/T )

and cos(2πt/T ), where T = 365.25 days. We centered temperatures by subtracting a si-

nusoidal fit at each station, resulting in the covariate Residual Temperature. Similarly, we

20

http://biostats.bepress.com/harvardbiostat/paper17



centered salinity values to obtain Residual Salinity. We centered Tide height simply by

subtracting the mean computed at each station.

The two base flows, the projected Mass Bay covariate, and the sinusoidal terms were all

smooth. Thus, we constrained the residual process f to lie in the space orthogonal to these

five smooth, time-varying covariates, in addition to an intercept. For each station we used

a separate B-spline basis expansion with 50 knots determined by quantiles of the days on

which the station was sampled.

For four Stations 82, 139, 159, and 160, complete results of the regression models de-

scribed in Sections 2.1 through 2.5 appear in Table 2 and Figure 3. As mentioned in Section

2.4, inference is conditional on the value of τ 2. None of the base DITP flow effects were

significant at the 5% level. For Stations 82 and 139, near NITP, the NITP flow effects were

large and highly significant: 42 and 23 log colonies per 20 ml per 100 MGD at Station 82

and 139 respectively. Thus, the NITP flows appeared to have a strong negative impact on

the water quality at nearby stations. The Mass Bay coefficients were significantly negative

for the stations near NITP (159 and 160) but not for the other two, suggesting that the

tranfer of discharges from the harbor to the offshore diffusers in Massachusetts Bay had a

positive effect on water quality at stations near DITP.

Interestingly, there were highly significant and moderately strong DITP overflow effects

at all four stations. These may represent the negative impact of storm overflow events in

which untreated wastewater was discharged from CSOs. There were no significant NITP

overflow effects, but this may be due to collinearity between DITP overflow and NITP

overflow and the “loss of information” incurred by the cessation of NITP flows in mid-1998.

In addition to the flow effects, there was evidence of tidal variation at Stations 82 and 159,

residual temperature variation at Stations 82 and 160, seasonal variation at all four stations.

There was no significant salinity effect at any of the four stations. Note that only Station
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82 demonstrated significant time-dependent overdispersion.

The time series plots in Figure 3 show the nonparametric time effects at the four stations,

together with 95% pointwise standard error bands obtained from appropriate quadratic

forms involving (8). Only Station 160 seemed to have residual autocorrelation. Note that

τ 2 was negligible for the other three stations, from which, after applying equation (4), we

conclude that f(t) ≡ 0 and there was no temporal autocorrelation.

Tables 3 summarizes the effect of transferring flow from NITP to DITP at twenty-two

stations. We captured this effect by subtracting the coefficient for base DITP from that for

base NITP, with the result representing the decrease in log mean Enterococcus concentration

associated with a transfer of 100 MGD from NITP to DITP. Many of the positive values

were significant, further supporting the conclusion that the NITP wastewater discharges led

to high Enterococcus counts throughout the harbor. The only significant negative value

was at Station 160, which is quite close to the pre-2000 DITP outfalls. Table 4 summarizes

the Mass Bay effects at the 14 stations for which sufficient post-2000 data were collected

to estimate the effect. The effects were significantly negative at Stations 130, 159, and 160

and significantly positive at Stations 44 and 48.

Figure 4 shows the geographic impact of the MWRA policies, computed using the GAMs

described in Section 2.7 to fit two-dimensional smooth functions to the estimated regression

coefficients β̂j weighted by Var
(
β̂j

)−1

. In the maps presented in Figure 4, each contour line

represents an integer level of the effect depicted, dark solid lines represent effects above the

estimated GAM intercept (which we interpret as the geographic mean), and light dashed

lines represent effects below the estimated intercept. The caption provides the intercepts,

their 95% confidence intervals, and P values for tests of the hypothesis that the spatial

effect is constant, using the chi-square test available through the GAM software. Figures

4(A) and 4(B) suggest that the base DITP flow effects were much flatter than the base
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NITP flow effects. Figure 4(C) suggests that the transfer of NITP wastewater to DITP had

the most significant impact near NITP, where the differences between the NITP and DITP

transfer effects on Enterococcus counts were signficantly positive. Figure 4(D) suggests

a somewhat flat Mass Bay effect that is nevertheless more strongly negative in the outer

harbor and Massachusetts bay than in the inner harbor. Note that Figures 4(B) and 4(C)

suggest anisotropic dispersion of poor-quality NITP effluent, with greater dispersion along

a northwest-southeast axis; these figures are consistent with known tidal exchange and

dispersion patterns in Boston Harbor (Signell and Butman, 1992).

Table 5 reports the results of goodness-of-fit tests for Poisson and negative binomial

models at Stations 82, 139, 159 and 160, including P-values and simulation summaries

for the test described in Section 2.6. This table also lists the P-values one would obtain

naively using a chi-square distribution. It is evident from Table 5 that the negative binomial

models fit much better than the Poisson models. This is consistent with the estimates and

confidence intervals for the gamma mixing parameters σ presented in Table 2. Note that

the distribution of the likelihood ratio statistic did not appear to be well-approximated by

a chi-square distribution.

4 Closing Remarks

In this article we have proposed a negative binomial model for time series of Enterococcus

counts in Boston Harbor, where nonstationarity and autocorrelation, are modeled using a

nonparametric smooth function f(t) of time in the predictor. Since f is not identifiable in the

presence of smooth, time-dependent covariates, we restricted it to lie in a space orthogonal

to that spanned by these smooth covariates. From the statistical analysis described in

Section 3 we have concluded that Enterococcus counts were greatly reduced near the NITP
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outfalls following the transfer of wastewaters from NITP to DITP and that the transfer of

wastewaters from Boston Harbor to the offshore greatly reduced the Enterococcus counts

near the DITP outfalls.

Figure 5 illustrates what would happen if we had not restricted f , but rather allowed

it to be any twice-differentiable function. The figure shows the estimated residual process

at Stations 139 and 160, obtained by using an unrestricted B-spline basis. Note that they

differ from the estimates shown in Figure 3. In particular, at Station 139, Enterococcus

levels appeared to drop steadily between 1995 and 2002, an effect apparently unexplained

by parametric covariates. The base NITP flow effect in this model was 12.0, with 95% con-

fidence interval (−16.8, 5.5). In the corresponding model with restricted f , illustrated by

Figure 3(B), the Enterococcus levels unexplained by covariates appeared to have negligible

change over the eight-year monitoring period. The base NITP effect in the properly re-

stricted model was 23.1, with 95% confidence interval (11.4, 34.9). Thus, in the unrestricted

model, much of the NITP effect was absorbed into f(t) due to collinearity. In the restricted

model, the effects of NITP flow were much more evident. A similar phenomenon occurred

with the Mass Bay effect at Station 160: in the unrestricted model, the effect estimate was

−1.4, with confidence interval (−4.0, 1.2), while in the restricted model the estimate was

-3.5, with confidence interval (−4.7,−2.3).

In Section 1 we mention that a secondary goal of this analysis was to develop predictive

models. As one reviewer pointed out, f(t) cannot be predicted beyond the range of the

data. However, marginalizing over a in (3) produces the prediction log(µt) = x′tβ for values

of t beyond the last time sampled. Since f was used primarily to account for temporal

autocorrelation and seasonal effects were addressed by the sinusoidal terms in the model,

such an approach seems adequate for the types of predictions required.

Figure 3(a) seems to suggest two outliers before 1998. However, both of these points
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corresponded to high NITP flows and do not appear quite so extreme when compared with

their predicted values, obtained either by including or excluding the two values. They also

corresponded to high fecal coliform counts, so they are unlikely to reflect laboratory or

data-entry error. Thus, removing them could bias the results. In general, negative binomial

models are less sensitive to outliers than are Poisson models, where values would be weighted

by µ−1
t rather than the potentially much smaller negative binomial weight (µt + σµ2

t )
−1.

We used PQL to estimate the tuning parameter for smoothing f . This produced con-

siderable computational savings for our application. However, while PQL has been shown

to work well as an approximation when random effects are used for smoothing (Hobert and

Wand, 2000; Wager et al., 2004), it can potentially lead to bias when random effects are used

for more traditional purposes such as accounting for additional levels of clustering (Breslow

and Lin, 1995; Lin and Breslow, 1996). Consequently, it is unclear whether this approach

would perform well in applications involving hierarchical random effects.

The maps in Figure 4 hint at a more integrated analysis where the spatial components

are estimated simultaneously with the other covariates. However, such an analysis would be

complicated not only by the spatial heterogeneity of effects, but also by the differing levels

of smoothness at each station. For example, Table 2 shows that the smoothing parameter

τ 2 was quite different at Station 160 than at Stations 82, 139, and 159. This would require

multiple smoothing parameters or a hierarchical treatment. In addition, the model would

need to consider spatially-dependent overdispersion; presumably, this could be addressed in

a manner similar to that described in Section 2.5, although h(t) would become a function

h(t, s) of three dimensions with anisotropy. The philosophy employed in this paper was to

minimize model complexity, a view that motivated not only the two-stage approach used to

address the spatial dimension of the problem, but also the decision to avoid the problematic

issues of stability and interpretation associated with the zero-inflated Poisson model.
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Data and software are available from the authors upon request.
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A Technical Details for Goodness-of-Fit Statistic

In this section we motivate the form of the goodness-of-fit statistic described by (10). Note

that

K log(τ 2)− 1

2
log
∣∣W′ΩW + τ−2I2K

∣∣ = K log(τ 2)− 1

2
log
(
τ−4K

∣∣τ 2W′ΩW + I2K

∣∣)
= −1

2
log
∣∣τ 2W′ΩW + I2K

∣∣
→ 0 as τ 2 → 0.

Therefore, L̃ is the sum of the logarithms of (1) computed with µt(a) = Yt and a = 0.

When τ 2 > 0 the corresponding log-likelihood is equal to the sum of the logarithms of (1)

computed at the estimated values, plus the term K log(τ 2) − 1
2

log |W′ΩW + τ−2I2K |. A

similar statistic can be obtained for the Poisson distribution by substituting the probability

mass function for the Poisson distribution for (1).

Note that, a priori, one could set the value of σ = 0 in the computation of L̃. This leads

to a different statistic whose null distribution can also be obtained via simulation. The

conclusions of Table 5 do not change with this modification.
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Table 1: Summary of Enterococcus Data in Boston Harbor

Jan. 1995 – July 1998 July 1998 – Sept. 2000 Sept. 2000 – Dec. 2002
Station n % ND med n % ND med n % ND med

44 72 68% < 5 53 77% < 5 67 70% < 5
47 90 63% < 5 47 79% < 5 0
48 65 77% < 5 51 82% < 5 52 73% < 5
65 88 66% < 5 64 66% < 5 40 80% < 5
77 97 71% < 5 83 92% < 5 83 83% < 5
79 94 24% 32.5 47 68% < 5 0
80 88 34% 10 44 80% < 5 0
81 88 39% 10 46 85% < 5 0
82 93 43% 5 70 84% < 5 82 84% < 5

106 93 71% < 5 82 82% < 5 80 92% < 5
116 73 45% 5 43 53% < 5 0
117 78 56% < 5 44 80% < 5 0
118 86 77% < 5 81 88% < 5 17 88% < 5
124 97 61% < 5 80 86% < 5 80 88% < 5
129 87 72% < 5 64 73% < 5 0
130 12 33% 12.5 113 69% < 5 84 89% < 5
135 81 73% < 5 80 86% < 5 17 88% < 5
136 76 80% < 5 60 92% < 5 0
139 104 54% < 5 83 80% < 5 84 76% < 5
141 96 59% < 5 79 95% < 5 83 90% < 5
142 88 74% < 5 74 91% < 5 78 94% < 5
159 76 64% < 5 84 64% < 5 18 83% < 5
160 80 68% < 5 83 66% < 5 80 94% < 5

Enterococcus counts at various MWRA monitoring stations in Boston Harbor, measured in colonies per
100 mL. Sample size, percent of observations falling below the detection limit (5 colonies per 100 mL), and
median count value are given for three time periods: January 5, 1995 through July 15, 1998; July 16, 1998
through September 6, 2000, and September 7, 2000 through December 19, 2002.
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Table 2: Negative Binomial Regression Model Estimates for Enterococcus Counts at Selected Boston Harbor
Stations

Station 82 Station 139
Naive Robust Naive Robust

Covariate Est. SE P value SE P value Est. SE P value SE P value
(Intercept) -1.60 1.47 0.2749 1.55 0.3024 0.93 1.58 0.5533 1.59 0.5564
Tide Height -0.92 0.16 < 0.0001 0.17 < 0.0001 0.24 0.14 0.0895 0.14 0.0903
Res. Temperature -0.39 0.12 0.0007 0.12 0.0010 -0.10 0.10 0.3274 0.10 0.3314
Res. Salinity 0.00 0.12 0.9748 0.10 0.9671 0.29 0.21 0.1654 0.21 0.1635
DITP overflow 7.11 2.19 0.0012 1.91 0.0002 5.87 2.30 0.0108 2.20 0.0076
NITP overflow -6.95 6.29 0.2692 7.84 0.3758 -7.49 7.67 0.3290 8.53 0.3799
DITP base -2.70 5.20 0.6039 5.41 0.6185 -9.47 5.61 0.0915 5.62 0.0920
NITP base 41.26 5.54 < 0.0001 5.98 < 0.0001 23.13 6.00 0.0001 6.27 0.0002
sin(2πt/T ∗) 0.08 0.33 0.8220 0.33 0.8189 0.16 0.32 0.6067 0.31 0.6014
cos(2πt/T ∗) 0.49 0.25 0.0475 0.25 0.0475 1.64 0.22 < 0.0001 0.22 < 0.0001
Mass Bay 0.25 0.50 0.6198 0.41 0.5466 0.68 0.41 0.0993 0.38 0.0721
Dispersion (σ) 3.4, 95% CI = (2.5, 4.7) 2.8, 95% CI = (2.0, 3.8)
Smoothing (τ2) 7.3× 10−4, df = 0.0 3.8× 10−4, df = 0.0
Time indep σ P = 0.035 P = 0.161

Station 159 Station 160
Naive Robust Naive Robust

Covariate Est. SE P value SE P value Est. SE P value SE P value
(Intercept) -1.75 1.82 0.3359 1.61 0.2758 -2.29 1.77 0.1962 1.74 0.1881
Tide Height 0.46 0.19 0.0138 0.13 0.0004 0.18 0.19 0.3472 0.19 0.3454
Res. Temperature 0.18 0.14 0.2065 0.11 0.0876 0.43 0.16 0.0058 0.16 0.0071
Res. Salinity -0.10 0.18 0.5766 0.13 0.4164 0.13 0.14 0.3470 0.13 0.3075
DITP overflow 6.49 2.37 0.0062 1.93 0.0008 8.07 2.50 0.0012 2.52 0.0014
NITP overflow 4.52 8.52 0.5958 7.93 0.5683 9.47 8.96 0.2906 8.08 0.2412
DITP base 6.60 6.35 0.2986 5.47 0.2281 10.10 6.21 0.1037 6.11 0.0987
NITP base 0.01 6.71 0.9992 6.16 0.9992 -5.18 6.90 0.4527 6.54 0.4277
sin(2πt/T ) -0.35 0.37 0.3485 0.32 0.2724 -0.56 0.37 0.1279 0.37 0.1291
cos(2πt/T ) -0.50 0.32 0.1169 0.22 0.0197 0.54 0.31 0.0810 0.31 0.0831
Mass Bay -2.06 0.88 0.0198 0.65 0.0016 -3.52 0.61 < 0.0001 0.69 < 0.0001
Dispersion (σ) 5.4, 95% CI = (3.8, 7.6) 5.9, 95% CI = (4.2, 8.3)
Smoothing (τ2) 7.6× 10−6, df = 0.0 1.7× 101, df = 5.0
Time indep σ P = 0.059 P = 0.575

Negative binomial regression estimates for enterococcus counts in colonies per 20 ml. Stations 82 and 139
are near Nut Island Treatment Plant (NITP) and Stations 159 and 160 are near Deer Island Treatment
Plant (DITP). Residual temperature is in oC units and residual salinity is in PSU units, each subtracted
from a sinusoidal trend. Tide Height reflects tide height in meters, centered at the station mean. The
overflow and base DITP and NITP effects, in 100 MGD units, are described in detail in Section 3. Time
t represents days since December 31, 1994, and T = 365.25. The dispersion parameter σ is the variance
of a Gamma mixing variable, shown with a 95% confidence interval. The smoothing parameter τ2 is the
variance of the normal random effect used to regularize fitting of a residual error process, corresponding to
the nonlinear degrees-of-freedom labelled “df”. The P value labelled “Time indep σ” summarizes the test
for time-independent dispersion described in Section 2.5.
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Table 3: Effect of Flow Transfers on Enterococcus Counts in Boston Harbor

NITP - DITP Flow
Naive Robust

Station Est. SE P value SE P value
44 38.1 8.0 < 0.0001 7.4 < 0.0001
47 2.6 4.9 0.6044 5.6 0.6481
48 28.8 7.7 0.0002 5.4 < 0.0001
65 7.2 4.6 0.1174 6.5 0.2679
77 27.2 5.2 < 0.0001 4.9 < 0.0001
79 29.5 4.2 < 0.0001 4.9 < 0.0001
80 24.1 3.9 < 0.0001 4.3 < 0.0001
81 41.3 5.7 < 0.0001 11.9 0.0005
82 44.0 4.7 < 0.0001 4.8 < 0.0001
106 4.5 5.1 0.3811 6.0 0.4549
116 3.5 3.7 0.3442 3.5 0.3178
117 18.9 4.8 < 0.0001 3.6 < 0.0001
118 -8.9 5.5 0.1068 5.6 0.1083
124 16.8 4.7 0.0003 5.4 0.0018
129 10.0 5.2 0.0546 6.8 0.1391
135 23.3 6.0 < 0.0001 4.3 < 0.0001
136 31.8 0.0 < 0.0001 12.8 0.0130
139 32.6 4.3 < 0.0001 4.4 < 0.0001
141 37.3 5.9 < 0.0001 9.0 < 0.0001
142 -18.6 9.3 0.0445 12.7 0.1423
159 -6.6 5.2 0.2073 3.6 0.0638
160 -15.3 5.5 0.0055 5.2 0.0031

Negative binomial regression estimates for the base flow effects of transferring flow from Nut Island Treat-
ment Plant (NITP) to Deer Island Treatment Plant (DITP), calculated as base NITP Flow - base DITP
Flow. Effects for 22 stations in Boston Harbor are given; Sufficient samples were not collected at Station
130 to estimate an NITP effect. See Figure 2 for station locations. Flow effects are presented in natural
logarithms of colonies per 20 ml per 100 MGD flow. Estimates are adjusted for tide height, temperature,
salinity, overflow effects, and a nonparametric residual time effect. When possible, estimates were also
adjusted for the effect of offshore diffusers.
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Table 4: Effect of Offshore Diffusers on Enterococcus Counts in Boston Harbor

Offshore Mass Bay Diffuser Effect
Naive Robust

Station Est. SE P value SE P value
44 1.3 0.5 0.0086 0.5 0.0050
48 1.1 0.5 0.0400 0.4 0.0080
65 0.6 0.5 0.2502 0.5 0.2196
77 0.7 0.5 0.1456 0.4 0.0970
82 0.2 0.5 0.6198 0.4 0.5466
106 -0.7 0.5 0.1762 0.5 0.1610
118 -0.6 0.9 0.5006 1.1 0.5634
124 0.2 0.5 0.7462 0.6 0.7886
130 -1.8 0.5 0.0005 0.7 0.0059
139 0.7 0.4 0.0993 0.4 0.0721
141 0.1 0.6 0.8567 1.0 0.9068
142 -1.0 0.8 0.2163 0.8 0.1994
159 -2.1 0.9 0.0198 0.7 0.0016
160 -3.5 0.6 < 0.0001 0.7 < 0.0001

Estimated effect of transferring wastewater flows from Boston Harbor to the offshore diffusers in Mas-
sachusetts Bay on September 6, 2000, at 14 stations in Boston Harbor. See Figure 2 for station locations.
Only 14 of the 23 stations had sufficient data to estimate this effect. Estimates are adjusted for tide height,
temperature, salinity, base and overflow treatment plant effects, and a nonparametric residual time effect.

Table 5: Goodness-of-Fit for Poisson and Poisson-Gamma Models for Enterococcus in Boston Harbor
Stations 82 and 160

Negative Binomial Poisson
Station Station

82 139 159 160 82 139 159∗ 160∗

L.R. Statistic 170.3 191.1 129.2 151.5 3841.8 806.4 698.3 873.1
Degrees-of-Freedom 234.0 260.0 167.0 225.2 216.9 224.5 122.6 192.2
χ2 P-value > 0.99 > 0.99 0.99 > 0.99 < 0.01 < 0.01 < 0.01 < 0.01
Simulation P-value 0.24 0.67 0.51 0.54 < 0.01 < 0.01 < 0.01 < 0.01
Simulated 5% Crit. Val. 178.9 216.9 146.8 173.4 503.8 363.1 362.4 361.7
Simulated Mean Under H0 161.6 197.6 128.4 151.4 457.9 332.3 337.0 333.9
Simulated SD Under H0 11.1 11.6 11.8 13.5 26.4 18.0 17.1 20.1

Goodness-of-fit statistics for Poisson and Poisson-Gamma models described in Section 3. The likelihood
ratio statistic is described in Section 2.6. Residual degrees-of-freedom are based on the formula described
by Ruppert et al. (2003, Section 3.14); the corresponding P-value from the χ2 test based on a normal
approximation is shown, as well as the simulation-based P-value suggested by Ruppert et al. (2003, Section
4.8.2) and described in Section 2.6. For each case, the null distribution was estimated from 500 simulations;
the corresponding mean and critical value for α = 0.05 are given.
∗ For Poisson models, one extremely large LR statistic from Station 159 and two extremes from Station 160
were removed before calculating the simulation mean and standard deviation; however, they were included
in the P value and critical value computation.
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Figure 1: Time Series Plots for Plant Effluent Flows

A. Flow from Deer Island Treatment Plant
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B. Flow from Nut Island Treatment Plant
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Effluent flows from Nut Island Treatment Plant (A) and Deer Island Treatment Plant (B). Flows are in
MGD units. The smooth solid line represents a smoothed “lower envelope”, obtained by 5th percentile
regression upon B-splines. 41 knots were used for NITP flow (at approximately 0.125 year intervals until
1999 and 1 year intervals thereafter), and 74 knots were used for DITP flow (at 0.125 year intevals).
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Figure 2: MWRA Sampling Stations
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Massachusetts Water Resources Authority sampling stations in Boston Harbor.
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Figure 3: Time Series Plots for Enterococcus Counts at Selected Boston Harbor Stations

A. Station 82 (Near Nut Island Treatment Plant) B. Station 139 (Near Nut Island Treatment Plant)
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C. Station 159 (Near Deer Island Treatment Plant) D. Station 160 (Near Deer Island Treatment Plant)
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Estimated residual time effect f(t) at Stations 82 and 139 (near NITP) and Stations 159 and 160 (near
DITP). Shaded region represents an approximate 95% pointwise confidence band. For presentation, the
physical scale of the vertical axis is 0.25 power.
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Figure 4: Effects by Location

A. DITP Effect B. NITP Effect
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C. Transfer Effect (NITP - DITP) D. Massachusetts Bay Diffuser Effect
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Geographic depiction of effects of interest, as described in Section 3. Each contour line represents a one
unit difference in regression coefficient estimate, with units as in Table 2. Dark solid lines represent effects
greater than the mean, light dashed lines represent effects less than the mean. The regression intercept,
interpreted as the geographic mean effect, and corresponding 95% confidence interval were, respectively,
(A) −1.3 (−5.3, 2.7), (B) 15.9 (13.6, 18.3), (C) 16.7 (12.4, 21.0), and (D) −0.34 (−0.76, 0.09). P values from
chi-square tests for spatial homogeneity were, respectively, (A) 0.80, (B) 0.002, (C) 0.003, and (D) 0.018.
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Figure 5: Examples of Penalized Regression Splines without Orthogonalization

Station 139
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Station 160
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Estimated residual time effect f(t) at Station 139 (near NITP) and Station 160 (near DITP), where f(t)
was not constrained to lie in a space orthogonal to smooth covariates. Figure 3 shows the corresponding
estimates for f(t) orthogonal to the smooth covariates. For Station 139, much of the effect of NITP is
absorbed into f(t) due to collinearity of the function space with the time-dependent effects.
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