10,270 research outputs found

    Misfit strain dependence of ferroelectric and piezoelectric properties of clamped (001) epitaxial Pb(Zr0.52,Ti0.48)O3 thin films \ud

    Get PDF
    A study on the effects of the residual strain in Pb(Zr0.52Ti0.48)O3 (PZT) thin films on the ferroelectric and piezoelectric properties is presented. Epitaxial (001)-oriented PZT thin film capacitors are sandwiched between SrRuO3 electrodes. The thin film stacks are grown on different substrate-buffer-layer combinations by pulsed laser deposition. Compressive or tensile strain caused by the difference in thermal expansion of the PZT film and substrate influences the ferroelectric and piezoelectric properties. All the PZT stacks show ferroelectric and piezoelectric behavior that is consistent with the theoretical model for strained thin films in the ferroelectric r-phase. We conclude that clamped (001) oriented Pb(Zr0.52Ti0.48)O3 thin films strained by the substrate always show rotation of the polarization vecto

    Piezoelectric properties of polyamide 11/NaNbO3nanowire composites

    Get PDF
    Polyamide 11(PA 11)/sodium niobate nanowire (NW) 0–3 composites with different volume fractions of NWs were synthesized. The electric polarization (P) was measured as a function of the applied electric field (E). The P–E hysteresis loop was used to work out the remanent polarization Pr of these materials. The dielectric permittivity and the piezoelectric strain constant were determined. Good impedance matching between inorganic and organic phases leads to higher electroactivity than conventional lead-free 0–3 composites. The piezoelectric voltage of the PA 11/NaNbO3 NW composites is of the same order as those obtained for fluorinated piezoelectric polymers. These composites could have some applications in flexible, low-cost, environmentally friendly piezoelectric sensors and actuators

    Improving the dielectric and piezoelectric properties of screen-printed low temperature PZT/polymer composite using cold isostatic pressing

    No full text
    This paper reports an improvement in dielectric and piezoelectric properties of screen-printed PZT/polymer films for flexible electronics applications using Cold Isostatic Pressing (CIP). The investigation involved half and fully cured PZT/polymer composite pastes with weight ratio of 12:1 to investigate the effect of the CIP process on the piezoelectric and dielectric properties. It was observed that the highest dielectric and piezoelectric properties are achieved at pressures of 5 and 10 MPa for half and fully cured films respectively. The relative dielectric constants were 300 and 245 measured at 1 kHz for the half and fully cured samples. Using unoptimised poling conditions, the initial d33 values were 30 and 35 pC/N for the half and fully cured films, respectively. The fully cured sample was then poled using optimized conditions and demonstrated a d33 of approximately 44 pC/N which is an increase of 7% compared with non-CIP processed material

    Optimal configuration of microstructure in ferroelectric materials by stochastic optimization

    Full text link
    An optimization procedure determining the ideal configuration at the microstructural level of ferroelectric (FE) materials is applied to maximize piezoelectricity. Piezoelectricity in ceramic FEs differ significantly from that of single crystals because of the presence of crystallites (grains) possessing crystallographic axes aligned imperfectly. The piezoelectric properties of a polycrystalline (ceramic) FE is inextricably related to the grain orientation distribution (texture). The set of combination of variables, known as solution space, which dictates the texture of a ceramic is unlimited and hence the choice of the optimal solution which maximizes the piezoelectricity is complicated. Thus a stochastic global optimization combined with homogenization is employed for the identification of the optimal granular configuration of the FE ceramic microstructure with optimum piezoelectric properties. The macroscopic equilibrium piezoelectric properties of polycrystalline FE is calculated using mathematical homogenization at each iteration step. The configuration of grains characterised by its orientations at each iteration is generated using a randomly selected set of orientation distribution parameters. Apparent enhancement of piezoelectric coefficient d33d_{33} is observed in an optimally oriented BaTiO3_3 single crystal. A configuration of crystallites, simultaneously constraining the orientation distribution of the c-axis (polar axis) while incorporating ab-plane randomness, which would multiply the overall piezoelectricity in ceramic BaTiO3_{3} is also identified. The orientation distribution of the c-axes is found to be a narrow Gaussian distribution centred around 45{45^\circ}. The piezoelectric coefficient in such a ceramic is found to be nearly three times as that of the single crystal.Comment: 11 pages, 7 figure

    Domain Size Dependence of Piezoelectric Properties of Ferroelectrics

    Full text link
    The domain size dependence of piezoelectric properties of ferroelectrics is investigated using a continuum Ginzburg-Landau model that incorporates the long-range elastic and electrostatic interactions. Microstructures with desired domain sizes are created by quenching from the paraelectric phase by biasing the initial conditions. Three different two-dimensional microstructures with different sizes of the 90o90^{o} domains are simulated. An electric field is applied along the polar as well as non-polar directions and the piezoelectric response is simulated as a function of domain size for both cases. The simulations show that the piezoelectric coefficients are enhanced by reducing the domain size, consistent with recent experimental results of Wada and Tsurumi (Brit. Ceram. Trans. {\bf 103}, 93, 2004) on domain engineered BaTiO3BaTiO_{3} Comment: submitted to Physical Review

    Electronic, Mechanical, and Piezoelectric Properties of ZnO Nanowires

    Full text link
    Hexagonal [0001] nonpassivated ZnO nanowires are studied with density functional calculations. The band gap and Young's modulus in nanowires which are larger than those in bulk ZnO increase along with the decrease of the radius of nanowires. We find ZnO nanowires have larger effective piezoelectric constant than bulk ZnO due to their free boundary. In addition, the effective piezoelectric constant in small ZnO nanowires doesn't depend monotonously on the radius due to two competitive effects: elongation of the nanowires and increase of the ratio of surface atoms

    Improving the functional properties of (K0.5Na0.5)NbO3 piezoceramics by acceptor doping

    Get PDF
    ZrO2 and TiO2 modified lead-free (K0.5Na0.5)NbO3 (KNN) piezoelectric ceramics are prepared by a conventional solid-state reaction. The effect of acceptor doping on structural and functional properties is investigated. A decrease in the Curie temperature and an increase in the dielectric constant values are observed when doping. More interestingly, an increase in the coercive field E-c and remanent polarization P-r is observed. The piezoelectric properties are greatly increased when doping with small concentrations dopants. ZrO2 doped ceramic exhibits good piezoelectric properties with piezoelectric coefficient d(33) = 134 pC/N and electromechanical coupling factor k(p) = 35%. It is verified that nonlinearity is significantly reduced. Thus, the creation of complex defects capable of pinning the domain wall motion is enhanced with doping, probably due to the formation of oxygen vacancies. These results strongly suggest that compositional engineering using low concentrations of acceptor doping is a good means of improving the functional properties of KNN lead-free piezoceramic system. (C) 2014 Elsevier Ltd. All rights reserved.Postprint (published version

    Extending device performance in photonic devices using piezoelectric properties

    Get PDF
    This study focuses on the influence of epi-layer strain and piezoelectric effects in asymmetric GaInAs/GaAlAs action regions that potentially lead to intra-cavity frequency mixing. The theoretical limits for conduction and valence band offsets in lattice-matched semiconductor structures have resulted in the deployment of non-traditional approaches such as strain compensation to extend wavelength in intersubband devices, where strain limits are related to misfit dislocation generation. Strain and piezoelectric effects have been studied and verified using select photonic device designs. Metrics under this effort also included dipole strength, oscillator strength, and offset of energy transitions, which are strongly correlated with induced piezoelectric effects. Unique photonic designs were simulated, modeled, and then fabricated using solid-source molecular beam epitaxy into photonic devices. The initial designs produce lambda wavelength, and the introduction of the piezoelectric effect resulted in lambda/2 wavelength. More importantly, this work demonstrates that the theoretical cutoff wavelength in intersubband lasers can be overcome
    corecore