12,857 research outputs found

    Extended Aharonov-Bohm period analysis of strongly correlated electron systems

    Full text link
    The `extended Aharonov-Bohm (AB) period' recently proposed by Kusakabe and Aoki [J. Phys. Soc. Jpn (65), 2772 (1996)] is extensively studied numerically for finite size systems of strongly correlated electrons. While the extended AB period is the system length times the flux quantum for noninteracting systems, we have found the existence of the boundary across which the period is halved or another boundary into an even shorter period on the phase diagram for these models. If we compare this result with the phase diagram predicted from the Tomonaga-Luttinger theory, devised for low-energy physics, the halved period (or shorter periods) has a one-to-one correspondence to the existence of the pairing (phase separation or metal-insulator transition) in these models. We have also found for the t-J model that the extended AB period does not change across the integrable-nonintegrable boundary despite the totally different level statistics.Comment: 26 pages, RevTex, 16 figures available on request from [email protected], to be published in J. Phys. Soc. Jpn 66 No. 7(1997), We disscus the extended AB period of strongly correlated systems more systematically by performing numerical calculation for the t-J-J' model and the extended Hubbard model in addition to the 1D t-J model and the t-J ladde

    Period Analysis using the Least Absolute Shrinkage and Selection Operator (Lasso)

    Full text link
    We introduced least absolute shrinkage and selection operator (lasso) in obtaining periodic signals in unevenly spaced time-series data. A very simple formulation with a combination of a large set of sine and cosine functions has been shown to yield a very robust estimate, and the peaks in the resultant power spectra were very sharp. We studied the response of lasso to low signal-to-noise data, asymmetric signals and very closely separated multiple signals. When the length of the observation is sufficiently long, all of them were not serious obstacles to lasso. We analyzed the 100-year visual observations of delta Cep, and obtained a very accurate period of 5.366326(16) d. The error in period estimation was several times smaller than in Phase Dispersion Minimization. We also modeled the historical data of R Sct, and obtained a reasonable fit to the data. The model, however, lost its predictive ability after the end of the interval used for modeling, which is probably a result of chaotic nature of the pulsations of this star. We also provide a sample R code for making this analysis.Comment: 9 pages, 13 figures, accepted for publication in PAS

    Light Curve and orbital period analysis of the eclipsing binary AT Peg

    Full text link
    CCD photometric observations of the Algol-type eclipsing binary AT Peg have been obtained. The light curves are analyzed with modern techniques and new geometric and photometric elements are derived. A new orbital period analysis of the system, based on the most reliable timings of minima found in the literature, is presented and apparent period modulations are discussed with respect to the Light-Time effect (LITE) and secular changes in the system. The results of these analyses are compared and interpreted in order to obtain a coherent view of the system's behaviour.Comment: 2 pages, 2 figures, contribution to the conference proceedings: IAU Symposium 282 - From Interacting Binaries to Exoplanets: Essential Modeling Tools, Tatransk\'a Lomnica, Slovakia, 18-22 Jul. 201

    Busy period analysis of the level dependent PH/PH/1/K queue

    Get PDF
    In this paper, we study the transient behavior of a level dependent single server queuing system with a waiting room of finite size during the busy period. The focus is on the level dependent PH/PH/1/K queue. We derive in closed form the joint transform of the length of the busy period, the number of customers served during the busy period, and the number of losses during the busy period. We differentiate between two types of losses: the overflow losses that are due to a full queue and the losses due to an admission controller. For the M/PH/1/K, M/PH/1/K under a threshold policy, and PH/M/1/K queues, we determine simple expressions for their joint transforms

    A cyclical period variation detected in the updated orbital period analysis of TV Columbae

    Get PDF
    The two CCD photometries of the intermediate polar TV Columbae are made for obtaining the two updated eclipse timings with high precision. There is an interval time \sim 17yr since the last mid-eclipse time observed in 1991. Thus, the new mid-eclipse times can offer an opportunity to check the previous orbital ephemerides. A calculation indicates that the orbital ephemeris derived by Augusteijn et al. (1994) should be corrected. Based on the proper linear ephemeris (Hellier, 1993), the new orbital period analysis suggests a cyclical period variation in the O-C diagram of TV Columbae. Using Applegate's mechanism to explain the periodic oscillation in O-C diagram, the required energy is larger than that a M0-type star can afford over a complete variation period \sim 31.0(\pm 3.0)yr. Thus, the light travel-time effect indicates that the tertiary component in TV Columbae may be a dwarf with a low mass, which is near the mass lower limit \sim 0.08Msun as long as the inclination of the third body high enough.Comment: 10 pages, 5 figure

    SIMPLIFIED METHODS FOR PERIOD ANALYSIS

    Get PDF
    corecore