65,739 research outputs found

    Role of Large Gluonic Excitation Energy for Narrow Width of Penta-Quark Baryons in QCD String Theory

    Full text link
    We study the narrow decay width of low-lying penta-quark baryons in the QCD string theoryin terms of gluonic excitations. In the QCD string theory, the penta-quark baryon decays via a gluonic-excited state of a baryon and meson system, where a pair of Y-shaped junction and anti-junction is created. Since lattice QCD shows that the lowest gluonic-excitation energy takes a large value of about 1 GeV, the decay of the penta-quark baryon near the threshold is considered as a quantum tunneling process via a highly-excited state (a gluonic-excited state) in the QCD string theory. This mechanism strongly suppresses the decay and leads to an extremely narrow decay width of the penta-quark system.Comment: Talk given at International Conference on the Structure of Baryons (Baryons 04) October 25 - 29, 2004, Ecole Polytechnique, Palaiseau, Franc

    URL Recommender using Parallel Processing

    Get PDF
    The main purpose of this project is to section similar news and articles from a vast variety of news articles. Let’s say, you want to read about latest news related to particular topic like sports. Usually, user goes to a particular website and goes through some news but he won’t be able to cover all the news coverage in a single website. So, he would be going through some other news website to checking it out and this continues. Also, some news websites might be containing some old news and the user might be going through that. To solve this, I have developed a web application where in user can see all the latest news from different websites in a single place. Users are given choice to select the news websites from which they want to view the latest news. The articles which we get from news websites are very random and we will be applying the DBSCAN algorithm and place the news articles in the cluster form for each specific topic for user to view. If the user wants to see sports, he will be provided with sports news section. And this process of extracting random news articles and forming news clusters are done at run time and at all times we will get the latest news as we will be extracting the data from web at run time. This is an effective way to watch all news at single place. And in turn this can be used as articles (URL) recommender as the user has to just go through the specific cluster which interests him and not visit all news websites to find articles. This way the user does not have to visit different sites to view all latest news. This idea can be expanded to not just news articles but also in other areas like collecting statistics of financial information etc. As the processing is done at runtime, the performance has to be improved. To improve the performance, the distributed data mining is used and multiple servers are being used which communicate with each other

    Induced defect nucleation and side-band instabilities in hexagons with rotation and mean flow

    Full text link
    The combined effect of mean flow and rotation on hexagonal patterns is investigated using Ginzburg-Landau equations that include nonlinear gradient terms as well as the nonlocal coupling provided by the mean flow. Long-wave and short-wave side-band instabilities are determined. Due to the nonlinear gradient terms and enhanced by the mean flow, the penta-hepta defects can become unstable to the induced nucleation of dislocations in the defect-free amplitude, which can lead to the proliferation of penta-hepta defects and persistent spatio-temporal chaos. For individual penta-hepta defects the nonlinear gradient terms enhance climbing or gliding motion, depending on whether they break the chiral symmetry or not.Comment: 24 pages, 15 figures, submitted to Physica

    Perfect Sequential Reciprocity and Dynamic Consistency

    Get PDF
    Dufwenberg and Kirchsteiger�s (2004) extends Rabin�s (1993) theory of reciprocity in a dynamic sense, introducing a rule of revision for player�s beliefs. The Sequential Reciprocity Equilibrium [SRE] they define can be dynamically inconsistent. In this article it is argued that such dynamic inconsistency is not intrinsically related to issues of reciprocity, but rather to the particular way the beliefs�updating process is modeled. A refinement of the SRE, which is both dynamically consistent and, it is argued, more sound to assumptions usually made in the literature of information economics and philosophy, is proposed.Reciprocity;� Dynamic Consistency

    Collective Bargaining and Walrasian Equilibrium

    Get PDF
    This paper contributes to the research agenda on non-cooperative foundations ofWalrasian Equilibrium. A class of barganing games in which agents bargain over prices and maximum trading con- straints is considered: It is proved that all the Stationary Sub- game Perfect Equilibria of these games implement Walrasian al- locations as the bargaining frictions vanish. The main novelty of the result is twofold: (1) it holds for any number of agents; (2) it is robust to di¤erent speci�cations of the bargaining process.strategic bargaining; Walrasian Equilibrium

    The role of the microvascular network structure on diffusion and consumption of anticancer drugs

    Get PDF
    We investigate the impact of microvascular geometry on the transport of drugs in solid tumors, focusing on the diffusion and consumption phenomena. We embrace recent advances in the asymptotic homogenization literature starting from a double Darcy—double advection-diffusion-reaction system of partial differential equations that is obtained exploiting the sharp length separation between the intercapillary distance and the average tumor size. The geometric information on the microvascular network is encoded into effective hydraulic conductivities and diffusivities, which are numerically computed by solving periodic cell problems on appropriate microscale representative cells. The coefficients are then injected into the macroscale equations, and these are solved for an isolated, vascularized spherical tumor. We consider the effect of vascular tortuosity on the transport of anticancer molecules, focusing on Vinblastine and Doxorubicin dynamics, which are considered as a tracer and as a highly interacting molecule, respectively. The computational model is able to quantify the treatment performance through the analysis of the interstitial drug concentration and the quantity of drug metabolized in the tumor. Our results show that both drug advection and diffusion are dramatically impaired by increasing geometrical complexity of the microvasculature, leading to nonoptimal absorption and delivery of therapeutic agents. However, this effect apparently has a minor role whenever the dynamics are mostly driven by metabolic reactions in the tumor interstitium, eg, for highly interacting molecules. In the latter case, anticancer therapies that aim at regularizing the microvasculature might not play a major role, and different strategies are to be developed

    The asymptotic homogenization elasticity tensor properties for composites with material discontinuities

    Get PDF
    The classical asymptotic homogenization approach for linear elastic composites with discontinuous material properties is considered as a starting point. The sharp length scale separation between the fine periodic structure and the whole material formally leads to anisotropic elastic-type balance equations on the coarse scale, where the arising fourth rank operator is to be computed solving single periodic cell problems on the fine scale. After revisiting the derivation of the problem, which here explicitly points out how the discontinuity in the individual constituents’ elastic coefficients translates into stress jump interface conditions for the cell problems, we prove that the gradient of the cell problem solution is minor symmetric and that its cell average is zero. This property holds for perfect interfaces only (i.e., when the elastic displacement is continuous across the composite’s interface) and can be used to assess the accuracy of the computed numerical solutions. These facts are further exploited, together with the individual constituents’ elastic coefficients and the specific form of the cell problems, to prove a theorem that characterizes the fourth rank operator appearing in the coarse-scale elastic-type balance equations as a composite material effective elasticity tensor. We both recover known facts, such as minor and major symmetries and positive definiteness, and establish new facts concerning the Voigt and Reuss bounds. The latter are shown for the first time without assuming any equivalence between coarse and fine-scale energies (Hill’s condition), which, in contrast to the case of representative volume elements, does not identically hold in the context of asymptotic homogenization. We conclude with instructive three-dimensional numerical simulations of a soft elastic matrix with an embedded cubic stiffer inclusion to show the profile of the physically relevant elastic moduli (Young’s and shear moduli) and Poisson’s ratio at increasing (up to 100 %) inclusion’s volume fraction, thus providing a proxy for the design of artificial elastic composites
    • …
    corecore