29,859 research outputs found

    Parameter selection for modeling of epidemic networks

    Get PDF
    The accurate modeling of epidemics on social contact networks is difficult due to the variation between different epidemics and the large number of parameters inherent to the problem. To reduce complexity, evolutionary computation is used to create a generative representation of the epidemic model. Previous gains from the use of local, verses global, operators are further explored to better balance exploration and exploitation of the genetic algorithm. A typical parameter study is conducted to test this new local operator and the new method of point packing is utilized as a proof of concept to perform a better search of the parameter space. All experiments from both approaches are tested against nine epidemic profiles. The point-packing driven parameter search demonstrates that the algorithm parameters interact substantially and in a non-linear fashion, and also shows that the good parameter settings are problem specific.Natural Sciences and Engineering Research Council of Canad

    Robust Parameter Selection for Parallel Tempering

    Full text link
    This paper describes an algorithm for selecting parameter values (e.g. temperature values) at which to measure equilibrium properties with Parallel Tempering Monte Carlo simulation. Simple approaches to choosing parameter values can lead to poor equilibration of the simulation, especially for Ising spin systems that undergo 1st1^st-order phase transitions. However, starting from an initial set of parameter values, the careful, iterative respacing of these values based on results with the previous set of values greatly improves equilibration. Example spin systems presented here appear in the context of Quantum Monte Carlo.Comment: Accepted in International Journal of Modern Physics C 2010, http://www.worldscinet.com/ijmp

    Statistical Analysis and Parameter Selection for Mapper

    Get PDF
    In this article, we study the question of the statistical convergence of the 1-dimensional Mapper to its continuous analogue, the Reeb graph. We show that the Mapper is an optimal estimator of the Reeb graph, which gives, as a byproduct, a method to automatically tune its parameters and compute confidence regions on its topological features, such as its loops and flares. This allows to circumvent the issue of testing a large grid of parameters and keeping the most stable ones in the brute-force setting, which is widely used in visualization, clustering and feature selection with the Mapper.Comment: Minor modification

    Parameter selection in sparsity-driven SAR imaging

    Get PDF
    We consider a recently developed sparsity-driven synthetic aperture radar (SAR) imaging approach which can produce superresolution, feature-enhanced images. However, this regularization-based approach requires the selection of a hyper-parameter in order to generate such high-quality images. In this paper we present a number of techniques for automatically selecting the hyper-parameter involved in this problem. In particular, we propose and develop numerical procedures for the use of Stein’s unbiased risk estimation, generalized cross-validation, and L-curve techniques for automatic parameter choice. We demonstrate and compare the effectiveness of these procedures through experiments based on both simple synthetic scenes, as well as electromagnetically simulated realistic data. Our results suggest that sparsity-driven SAR imaging coupled with the proposed automatic parameter choice procedures offers significant improvements over conventional SAR imaging
    • …
    corecore