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Parameter Selection in Sparsity-driven SAR Imaging
Özge Batu and M̈ujdat Çetin

Abstract

We consider a recently developed sparsity-driven synthetic aperture radar (SAR) imaging approach which can produce superres-

olution, feature-enhanced images. However, this regularization-based approach requires the selection of a hyper-parameter in order to

generate such high-quality images. In this paper we present anumber of techniques for automatically selecting the hyper-parameter

involved in this problem. In particular, we propose and develop numerical procedures for the use of Stein’s unbiased risk estimation,

generalized cross-validation, and L-curve techniques forautomatic parameter choice. We demonstrate and compare the effectiveness

of these procedures through experiments based on both simple synthetic scenes, as well as electromagnetically simulated realistic

data. Our results suggest that sparsity-driven SAR imaging coupled with the proposed automatic parameter choice procedures offers

significant improvements over conventional SAR imaging.

Index Terms

parameter selection, synthetic aperture radar, sparse signal representation, non-quadratic regularization, generalized cross-validation,

Stein’s unbiased risk estimator, L-curve.

I. I NTRODUCTION

Conventional image formation techniques for synthetic aperture radar (SAR) suffer from low resolution, speckle, and sidelobe

artifacts. These effects pose challenges for SAR images, in particular when they are used in automatic target detection and

recognition tasks. Recently proposed SAR image formation algorithms have been shown to produce high quality images,

offering increased resolution and reduced artifacts [1], [2], [3]. We consider the sparsity-driven, non-quadratic regularization-

based approach of [1] which aims to produce feature-enhanced SARimages.For a review of this approach as well as other

uses of sparsity-based ideas in radar imaging, see [4]. The idea behind this approach is to emphasize appropriate features by

regularizing the solution. In fact, regularization methods are well known and widely used for real-valued image restoration

and reconstruction problems. However SAR imaging involves some difficulties in application of these methods. As an example,

SAR involves complex-valued reflectivities. Considering and addressing such difficulties, extensions of real-valued non-quadratic

regularization methods have been developed for SAR imaging [1].

Regularization methods, in general, try to balance the fidelity to data and priorknowledge to obtain a stable solution. This

stability is ensured through a scalar parameter which is called the regularization parameter or hyper-parameter. Selection of

this parameter is a fundamental problem within a regularization framework. There exist several approaches which are based

on statistical considerations such as Stein’s unbiased risk estimator (SURE) [5], generalized cross-validation (GCV) [6], [7],

Bayesian methods [8], as well as graphical tools such as the L-curve [9]. Most parameter choice methods have been developed
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in the context of the hyper-parameter choice problem for Tikhonov regularization [10], which is a well-known and widely-used

quadratic regularization approach. The quadratic form of the optimizationproblem in Tikhonov regularization results in a closed-

form solution, through a set of linear equations, which simplifies the computation of the regularized solution and the automatic

selection of the regularization parameter. As the promise of sparse representation has been discovered in a variety of fields such

as optical flow estimation [11], compressed sensing [12] and functional regression [13], regularization constraints which impose

sparsity have become more prevalent. It has been shown that a non-quadratic regularizer promotes sparsity in the solution (see

e.g., [14]). However, inclusion of such a non-quadratic constraintyields an optimization problem without a closed-form solution.

Consequently, iterative procedures need to be used to compute the solution. In this case, the selection of the regularization

parameter is more complicated than the quadratic case. For parameter choice in non-quadratic regularization-based techniques,

the application of SURE, GCV, and L-curve is limited [15], [16], [8], [17], [18]. Especially for the form of our problem which

considers anℓp-norm penalty withp ≤ 1 for complex-valued inverse problems, the use and effectiveness ofthese methods

have not been truly explored yet. We propose the use of SURE, GCV, and L-curve in the sparsity-driven SAR image formation

framework [1] and develop a number of numerical tools for efficientimplementation of the methods considered. We present

the effectiveness of the applied methods through our experiments based on both simple synthetic data as well as the Air Force

Research Laboratory (AFRL) Backhoe Data Dome [19].

The organization of this paper is in the following manner. Sparsity-drivenSAR imaging is formulated in Section II. In Section

III, SURE, GCV, and L-curve are adapted to the form of our problem.The optimization tools we propose are discussed in

Section IV. Finally, our experimental results are presented in Section V, and the work in this paper is summarized in Section

VI.

II. SPARSITY-DRIVEN SAR IMAGING

We focus on the regularization-based SAR imaging framework proposed in [1]. The framework of [1] relies on the SAR

observation process expressed in the following form:

g = Hf + w (1)

whereH represents a complex-valued discrete SAR operator,w stands for additive white Gaussian noise, g andf are data and

the reflectivity field, respectively. In SAR imaging, one can obtain the reflectivity field starting from various data domains such

as phase history, range profile or conventional image. Here, we firstproduce a conventional SAR image from SAR returns and

then use it as our datag. In such a case, the SAR forward modelH is a convolutional operator. The framework developed in

[1] involves mechanisms for improving sparsity of various features. Here, we consider one form of this approach that imposes

sparsity on the reflectivity field. In particular, to emphasize sparsity of thereflectivities, the SAR image reconstruction problem

is formulated as the following optimization problem:

f̂λ = argminf ‖g − Hf‖2
2 + λ ‖f‖p

p . (2)

Here,λ is the regularization parameter,‖f‖p denotes theℓp-norm and is defined as‖f‖p =
(
∑n

i
|fi|

p
)1/p

wherefi is the

ith element off , n is the number of elements inf . The first term in (2) is the data fidelity term which incorporates the SAR

observation model in (1), and thus information about the observation geometry. The second term which is called the regularizer

or side constraint brings in the prior information we would like to impose.When one choosesp = 2 in this term, that leads to

the well-known Tikhonov regularization method [10]. Unlike the Tikhonov approach, the side constraint in our context is aimed
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at indicating a preference for sparsity; hence a choice other thanp = 2 will be made.It has been known that minimumℓp-norm

reconstruction withp ≤ 1 provides localized energy concentrations in the resultant image, and thuspromotes sparsity. In such

images, most elements are forced to be small, on the other hand, a few are allowed to have large values. The outcome of the

use of this term is tosuppress image artifacts, increase the resolvability of scatterers, and result in a sparse image.Such sparsity

constraints have been shown to lead to superresolution [20]. A smaller value of p puts a smaller penalty on large pixel values as

compared to a largerp, and thus produces a field with a smaller number of nonzero pixel values. Note that, in general, pixels in

the solution do not directly correspond to the scatterers in the reflectivity field because there could be multiple scatterers within

one pixel.

To avoid problems due to nondifferentiability of the objective function whenfi for any i is zero,a smooth approximation to

the ℓp-norm is used, and the objective function in (2) takes the following form:

Ψ = ‖g − Hf‖2
2 + λ

n
∑

i=1

(

|fi|
2 + β

)p/2
(3)

whereβ is a small scalar.As long asβ is small but positive, the minimizer of the above cost function withβ 6= 0 is close to

the minimizer obtained withβ = 0 [21]. However too smallβ values increase the computation time required for the solution

of this optimization problem. In our experiments, we chooseβ empirically by considering this tradeoff. In particular, we pick

β = 10−7.

Our goal now is to find the estimatêfλ = argminfΨ. We note that whenp > 1, this is a convex optimization problem. We

take the gradient ofΨ with respect tof :

∇Ψ = −2H†g + 2H†Hf + 2λWβ (f) f (4)

whereWβ(f) is a diagonal weight matrix whoseith diagonal element isp
2

(

|fi|
2 + β

)

p

2
−1

, and set the gradient equal to zero.

The solution of the optimization problem for any value ofp should be a stationary point and should satisfy this equality:

(

H†H + λWβ(f̂λ)
)

f̂λ = H†g (5)

The ith diagonal element ofWβ(f̂λ) weights the intensity of theith pixel by a spatially varying penalty. Since the weight

matrix depends on̂fλ, the equation in (5) is not linear in̂fλ, and (5) does not have a closed-form solution. However, one can

develop a fixed-point iteration [22], each step of which involves the solution of a linear problem:
(

H†H + λWβ(f̂
(k)
λ )

)

f̂
(k+1)
λ = H†g (6)

wheref̂
(k)
λ is the solution obtained in thekth iteration.Although equation (6), in principle, leads to a closed form solution for

f̂
(k+1)
λ , this would require the inversion of a large matrix. Hence we solve the set of equations in (6) numerically by using the

conjugate gradient algorithm. This algorithm has been shown to be a descent algorithm and is likely to converge to a minimum

of the cost function [23].

III. PARAMETER SELECTION

The objective function in (3) contains a scalar parameterλ which has a role in determining the behavior of the reconstructed

field. Small parameter values make the data fidelity term; i.e. first term in (3), dominate the solution, whereas large values of

λ emphasizethe ℓp-norm based penalty term. In order to generate an accurate high-quality image, it is necessary to strike the

right balance between these two terms by choosing the value ofλ approprately. To chooseλ in a data-driven way, we consider

three methods: SURE, GCV, and L-curve.
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1) SURE: SURE aims to minimize the following predictive risk, i.e. predictive mean-squared error:

Rλ =
∥

∥Hftrue − Hf̂λ

∥

∥

2

2
. (7)

Here, f̂λ denotes the solution obtained by usingλ and ftrue is the true, unknown field. Obviously, the predictive risk cannot

be calculated exactly since it depends onftrue. However, Stein’s method achieves an unbiased estimate of the predictive risk

[5], [24], by computing the expected value of this risk as:

R̂λ = nσ2 + ‖e‖2
2 + 2σ2∇e (8)

whereσ2 is the variance of the Gaussian white noisew, e = Hf̂λ−g and∇e =
∑

∂ei/∂gi. Here,e is a measure for the fitness

of the estimatef̂λ to the observationg, and is usually called the residual. For standard Tikhonov solution, the computation of

the gradient in (8) is straightforward since the regularized solution is a linear function of the data. However, when non-quadratic

regularization methods are considered, a nonlinear relation arises between the data and the estimate and there does not exist a

closed-form solution for the estimate. In this case, it is more convenient touse the chain rule for evaluating∇e and calculate

the risk estimate in the following form1 [15]:

R̂λ = −nσ2 + ‖e‖2
2 + 2σ2trace

(

HΨ−1

f̂ f̂
Ψf̂g

)

(9)

whereΨf̂ f̂ = ∂2Ψ/∂f̂∂f̂† is the Hessian, andΨf̂g = ∂2Ψ/∂f̂∂g†. Then, provided thatσ2 is known or accurately estimated,

the problem reduces to finding the parameterλ which minimizes (9).

Starting from (9), we develop the SURE function for (3) as:

R̂λ = −nσ2 +
∥

∥Hf̂λ − g
∥

∥

2

2
+ 2σ2trace(Tλ) (10)

where

Tλ = H
(

2H†H + λK(f̂λ, β)
)−1

2H† (11)

andK(f̂λ, β) is a diagonal matrix whoseith diagonal element isp
(

(p − 1)|(f̂λ)i|
2 + β

) (

|(f̂λ)i|
2 + β

)

p

2
−2

. In summary, the

goal is to findλ that minimizesR̂λ in (10), and consequently obtain̂fλ which is the image reconstructed with this parameter.

See [25] for more details.

2) GCV: The method of generalized cross-validation [6], [7] provides an estimate for λ which approximately minimizes the

expected value of the predictive risk, withoutrequiring knowledgeof σ. Let us define the so-called influence matrixAλ as:

Hf̂λ = Aλg. (12)

Then the GCV estimate ofλ is the minimizer of (see [6]):

Vλ =
1
n
‖eλ‖

2
2

[

1
n

trace(I − Aλ)
]2

. (13)

The GCV method was originally designed for problems in whichAλ is independent ofg. If Aλ depends ong, thenAλ can

be approximated byH∂f̂λ/∂g, where∂f̂λ/∂g is the Jacobian of̂fλ with respect tog [26]. (Note thatAλ = H∂f̂λ/∂g if f̂λ

is linearly dependent ong.) Thus, we setAλ = H∂f̂λ/∂g. We also noteH∂f̂λ/∂g = HΨ−1

f̂ f̂
Ψf̂g = Tλ whereTλ is given in

(11), and obtain the GCV function as:

Vλ =
1
n
‖eλ‖

2
2

[

1
n

trace(I − Tλ)
]2

. (14)

1For the sake of notational simplicity, we replacêfλ with f̂ in subscripts.
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3) L-curve: L-curve was first defined in the Tikhonov context as a parametriclog− log plot of the norm||f̂λ||2, versus the

corresponding residual norm||Hf̂λ − g||2, with the regularization parameterλ as the parameter [9]. Then, it was extended to

different regularization methods [27], [18].In many applications, L-curve appears as an L-shaped curve as shown in Figure 1.

The corner of the L-shaped curve is considered as the region containing good parameter choices that balance the regularization

errors and perturbation errors in̂fλ. The L-curve criterion for choosing the regularization parameter is based on this feature.

Although this intuition is natural and quite simple, computing the corner of the L-curve may not be straightforward. Several

ideas have been proposed to determine the corner including the point of maximum curvature, the point closest to a reference

location, such as the origin [27], and the point of tangency with a line of slope−1 [18]. Below we adaptL-curve to the parameter

selection problem in sparsity-driven SAR imaging, and develop our own procedure for finding the corner.

IV. OPTIMIZATION TOOLS

A. Computation of SURE and GCV: Randomized Trace Estimation

For large scale problems,Tλ in (11) cannot be easily constructed due to the memory limitations of computers. In such cases,

it is more convenient to find an estimate oftrace (Tλ), which is what SURE and GCV need, without explicitly constructingTλ.

The method in [28] calculates an estimate of the trace of the influence matrix inregularization of linear equations and enables

the use of the SURE and GCV methods in large-scale problems. The methodcan be applied through the following algorithm:

1) generatek independent realizationsqi of a white noise vector with zero mean and unit variance, wherei ∈ {1, ..., k},

2) computeti (λ) = q†i Tλqi,

3) take the sample mean̄t (λ) =
∑k

1=1
ti (λ) /k to be the trace estimate.

This algorithm appears to have an explicit dependence on the matrixTλ. However, here we do not constructTλ explicitly.

All the matrix-vector products involved are actually carried out by convolution operations (in the Fourier domain) such that

there is no need to construct the convolution matrix and deal with memory-intensive matrix operations.It is well known that

a conventional SAR image, which is the data in our case, can be describedby the convolution of the original reflectivity field

with a sinc function [29]. Hence the operatorH as well asH† in our problem are convolutional. Note thatTλ itself is also a

convolutional operator. Therefore the computation required in step 2 above is also carried out through convolution operations.

Finally note that the computation ofTλ in (11) requires the inversion of a large matrix. Rather than performing that inversion

explicitly, we perform numerical computation through the conjugate gradient algorithm by posing this calculation as the problem

of solving a set of linear equations.

The accuracy of the trace estimate obtained through the 3-step procedure above depends on the variability of theti (λ)’s, and

this variability can be quantified in terms of the variance ofti (λ). It has been shown that this variance is minimized by taking

the white noiseqi to bea random vector whose components are independent and take values +1 and -1, with equal probability

[30].

B. Minimization of SURE and GCV: Golden Section Search

SURE and GCV are aimed at finding the value ofλ which minimizes the expressions given in (10) and (13), respectively.

Note that the differentiation of these expressions is not straightforward and these minimization problems do not have closed-

form solutions. One might consider a brute force search but we shouldalso take into account that evaluating points on SURE

and GCV curves is computationally demanding and one would prefer to compute as few points as possible.Based on our

experience with these methods, SURE and GCV curves have a unimodal structure in most cases although, to our knowledge,
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there is no guarantee that this will always be the case. Even if they exhibit unimodal behavior in their overall structure, due to

numerical approximations involved in their computation, the curves might not be strictly unimodal due to oscillations in some

parts, especially around small lambda values. Fortunately, these small oscillations do not cause significant problems unless the

optimization method requires derivatives and small step size in its search.Therefore we employ golden section search which is

a derivative-free optimization method for unimodal functions [31]. Unlike a gradient based approach, which seeks the minimum

with local movements, the golden section search approach has a more global perspective and first aims to locate the general

basin of attraction. It then focuses on smaller regions in subsequent steps. In this sense, it is less likely that it will be trapped

in local minima with large values of the function to be optimized, far away fromthe actual minimum. Of course, there is

no guarantee that it will perfectly locate the global minimum. We find the minimaof SURE and GCV functions through the

following algorithm:

1) determine an initial intervalI = [λmin, λmax] (we start with a quite large initial interval, e.g.,I =
[

10−8, 102
]

)

2) determine two test valuesλ1, λ2 ∈ I according to the golden ratioα = 0.618

(sinceλ covers a large range of values, we choose golden section in the logarithmic scale), i.e.,

log λ1 = log λmin + (1 − α) (log λmax − log λmin) and

log λ2 = log λmin + α (log λmax − log λmin)

3) computeR̂λ1
and R̂λ2

(Vλ1
andVλ2

)

4) determine a new interval̃I through golden section search, i.e.,

if R̂λ2
− R̂λ1

> δ (Vλ2
− Vλ1

> δ) (whereδ is a small positive constant) then

Ĩ = [λmin, λ2]

else

Ĩ = [λ1, λmax]

5) setI = Ĩ and repeat starting from step 2 until the interval is sufficiently small (e.g., log λmax − log λmin = 10−2)

C. Finding the L-corner

Evaluating points on the L-curve involves less computational cost since it does not require the computation of the matrix

trace involved in SURE and GCV.Still, it is desirable to compute as few points as possible. Besides, defining thecorner of the

L-curve is an important issue. Our approach involves the definition and solution of an optimization problem for this task. In

particular, we determine the L-corner through the following algorithm:

1) let I = [I1, I2] denote the search interval forλ whereI1 andI2 are the lower and the upper limits ofI, respectively.

2) set initial limits of the interval such thatI1 = λ0
min andI2 = λ0

max

3) consider theλ valuesλk−1
min, λk

min = λk−1
min + ∆λ, λl−1

max andλl
max = λl−1

max − ∆λ wherek and l are iteration numbers,

and∆λ is a predefined step size

4) compute slopesmk−1
min, mk

min, ml−1
max andml

max of the tangent lines at the points on the L-curve corresponding toλk−1
min,

λk
min, λl−1

max andλl
max, respectively

(note that the derivatives are computed numerically)

5) if mk−1
min > mk

min then

I1 = λk
min

incrementk
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else

λmin = λk−1
min

and similarly,

if ml−1
max < ml

max then

I2 = λl
max

incrementl

else

λmax = λl−1
max

continue shrinking the interval by iterating through step 3 to 5.

(note that the conditions fork and l in step 5 are performed independently in parallel as illustrated in Figure 1)

6) set a reference point(x0, y0) which is the intersection point of the tangent lines atλmin andλmax

7) determine two test valuesλ1, λ2 ∈ I according to the golden ratio

8) compute the residual normrλi
= ||g − Hf̂λi

||22 and the solution normρλi
= ||f̂λi

||pp for i = 1, 2

9) compute the distance from(rλi
, ρλi

) to the reference asdi = (log rλi
− log x0)

2 + (log ρλi
− log y0)

2

10) determine a new interval̃I through golden section search, i.e.,

if d1 > d2 then

Ĩ = [λ1, λmax]

else

Ĩ = [λmin, λ2]

11) setI = Ĩ and repeat starting from step 7 until the interval is sufficiently small

Fig. 1. The generic form of the L-curve and path for L-corner search.

V. EXPERIMENTAL RESULTS

We demonstrate the effectiveness of the parameter choice algorithms wehave described on both synthetic and electromag-

netically simulated realistic data. We present sparsity-driven SAR images with selected parameters and compare these results to

different parameter choices and conventional reconstructions.
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A. Synthetic Scene

We first present experimental results on a synthetic example. As we know the ground truth, we can use this example to

provide a quantitative performance analysis in terms of the reconstructed scenes.The results we present on a single scene and a

single noise realization here are typical over multiple scenarios not presented here.The complex-valued synthetic scene consists

of 9 randomly chosenpoint scatterers as shown in Figure 2(a). Throughout our work, we display the magnitude (in dB) of

the complex-valued reflectivities. Figures 2(b) and (c) show the point spread function (PSF) of the SAR imaging system and

the conventional SAR image of the synthetic scene, respectively. Here the collected SAR data involve bandlimited (through a

rectangular window) Fourier samples, and as a result, the PSF is a 2-D sinc function. The vertical spread of the PSF corresponds

to the resolution in the range direction in which the radar pulses are transmitted. The horizontal spread of the PSF corresponds

to the cross-range resolution. Thus, the conventional image is a filtered or smoothed version of the true scene. We perform

experiments for different noise levels, adding complex Gaussian noiseto the simulated SAR data.We take the SNR to be the

power ratio of the noise-free data to noise in dB.

(a) (b) (c)

Fig. 2. The plot of the magnitude of the (a)32 × 32 synthetic scene, (b) PSF and (c) conventional SAR image.

SNR
∥

∥f − f̂λ

∥

∥

2

2

∥

∥Hf − Hf̂λ

∥

∥

2

2
SURE- GCV L-curve

30 dB 0.024 0.028 0.028 0.004

20 dB 0.080 0.081 0.083 0.026

10 dB 0.302 0.271 0.342 0.104

TABLE I

VALUES OF PARAMETERλ MINIMIZING VARIOUS COSTS FOR THE SYNTHETIC SCENE INFIGURE 2 WHEN P=1.

SNR
∥

∥f − f̂λ

∥

∥

2

2

∥

∥Hf − Hf̂λ

∥

∥

2

2
SURE- GCV L-curve

30 dB 1.108 0.020 0.018 0.054

20 dB 1.720 0.162 0.173 0.125

10 dB 2.864 0.828 0.826 0.854

TABLE II

VALUES OF PARAMETERλ MINIMIZING VARIOUS COSTS FOR THE SYNTHETIC SCENE INFIGURE 6, WHEN P=1.

Here, we consider sparsity-driven reconstructions withp = 1. Figure 3 shows the estimation error
∥

∥ftrue − f̂λ

∥

∥

2

2
, predictive

risk
∥

∥Hftrue − Hf̂λ

∥

∥

2

2
, as well as SURE and GCV curves for three different SNR values. SURE has a similar structure with
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Fig. 3. The estimation error, predictive risk, SURE and GCV cost functions for the synthetic image with (a) 30 dB, (b) 20 dB and (c) 10 dB

SNR.

the predictive risk whereas GCV has a different structure. Note that GCV is very flat around its minimum and this sometimes

makes it difficult to locate the minimum. Yet,the minima of SURE and GCV are closeto the minimum of the predictive risk. As

we have mentioned before, SURE and GCV estimate the predictive risk in (7), but the quality of the reconstruction is, naturally,

better measured by the estimation error.In this example, the minima of the estimation error and the predictive risk arevery

close, and as a result SURE and GCV provide good parameter choices inthe sense of minimizing the estimation error.Figure 4
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Fig. 4. L-curve and corresponding L-corner for the synthetic image with (a) 30 dB, (b) 20 dB and (c) 10 dB SNR.

shows the L-curve and corresponding L-corner. Note that for lowernoise levels, the corner of the L-curve is sharper, and thus it

is easier to locate the L-corner. Parameter choices of SURE, GCV and L-curve are given and compared to the parameter values

minimizing the estimation error and the predictive risk in Table I. When compared to the estimation error and the predictive

risk, SURE and GCV lead to very good parameter choices whereas L-curve chooses a smaller parameter.In general, the L-curve

choice ofλ is 3 − 10 times smaller than those of SURE and GCV, and thus leads to less sparse images. The observation that

L-curve usually leads to underregularization has been made by others as well (see, e.g., [32]).

We now show the reconstruction results based on these parameters in Figure 5. We observe that SAR images reconstructed

using the SURE, GCV, and L-curve parameters are very similar and hard to distinguish visually. The reconstructed SAR image

is noisy whenλ is too small, and some of the scatterers are notfound when λ is too large. This confirms the need for a

parameter choice method. In addition, the similarity of the scenes reconstructed through our parameter choice algorithms to the

scene reconstructed by theoptimal parameterλoptimum (minimizing the estimation error), as well as to the underlying true
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(a) (b) (c)

Fig. 5. SAR reconstructions for (a) 30 dB, (b) 20 dB and (c) 10 dB. The following parameters are used from top to bottom:10
−2λoptimum,

λoptimum, λSURE (SURE and GCV choices ofλ are almost the same and their reconstructions are visually indistinguishable therefore we

show one reconstruction for both),λL−curve, and10
2λoptimum .

scene demonstrates the success of our approach.

In certain cases, we have observed significant differences betweenthe minima of the estimation error and the predictive risk.

An example of this occurs when we consider a different SAR imaging scenario where the resolution is very poor resulting in

a PSF as in Figure 6. In particular, in the 30 dB SNR case of the scenario in Figure 6, the minimum of the predictive risk is

attained at a significantly smaller value ofλ as compared to the estimation error, as shown in Figure 7. As SURE and GCV are

based on the predictive risk, they also choose small parameter values and may lead to underregularization in this case. In fact,

as shown in Table II, SURE and GCV produce smaller parameters than L-curve for 30 dB and 10 dB SNR in this particular

scenario. The main difference between the scenario in Figure 2 and the one in Figure 6 is that the resolution is much lower in

the latter case. When we have high resolution (such that the pixel spacing and the resolution are close), the operatorH is close

to unitary. When that is the case, the predictive risk and the estimation errorhave a similar structure. On the other hand, in
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(a) (b) (c)

Fig. 6. The plot of the magnitude of the (a)32 × 32 synthetic scene, (b) PSF and (c) conventional SAR image.
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Fig. 7. The estimation error, predictive risk, SURE and GCV cost functions for the synthetic image in Figure 6 with 30 dB SNR.

scenarios such as the one in Figure 6, whereH is further away from being unitary, we are not guaranteed that the two curves

will have similar structures. This explains our empirical observations in thisexperiment in terms of the differences between the

minima of the predictive risk and the estimation error.

B. Realistic Data

Fig. 8. Backhoe model used in Xpatch scattering predictions.The view to the right corresponds approximately to the view inthe images in

our experiments.

SNR SURE-GCV L-curve

30 dB 1.9 × 10
−3

2.0 × 10
−4

20 dB 3.6 × 10
−3

1.5 × 10
−3

10 dB 3.0 × 10
−2

7.8 × 10
−3

TABLE III

VALUES OF PARAMETERλ MINIMIZING VARIOUS COSTS FOR THE BACKHOE SCENE WHEN P=1.
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Fig. 9. (a) SURE and GCV curves, (b) L-curve and corresponding L-corner for the backhoe scene whenp = 1 and SNR=20 dB.

SNR SURE-GCV L-curve

30 dB 8.6 × 10
−5

7.6 × 10
−5

20 dB 4.6 × 10
−4

3.0 × 10
−4

10 dB 2.8 × 10
−3

1.7 × 10
−3

TABLE IV

VALUES OF PARAMETERλ MINIMIZING VARIOUS COSTS FOR THE BACKHOE SCENE WHEN P=0.7.

We now present 2-D image reconstruction experiments based on the Air Force Research Laboratory (AFRL) Backhoe Data

Dome, which consists of simulated wideband (7-13 GHz), full polarization, complex backscatter data from a backhoe vehicle

in free space [19]. The backhoe model is shown in Figure 8. The backscatter data are available over a full upper2π steradian

viewing hemisphere.In our experiments, we use VV polarization data, centered at 10 GHz, and with an azimuthal span of

110◦ and a peak elevation angle of30◦ (at azimuth center). Note that this is a wide-angle imaging scenario. Sparsity-driven

SAR imaging was extended and applied to SAR data collections that span a wideangular aperture [33]. Here, we consider the

sparsity-driven composite imaging technique of [33] and show experimental results based on this framework. In this framework,

the whole angular aperture is divided into subapertures and a separate image is formed for each subaperture.For composite

imaging, we use 19 overlapping subapertures, with azimuth centers at0◦, 5◦, . . . , 90◦, and each with an azimuthal width of
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Fig. 10. (a) SURE and GCV curves, (b) L-curve and corresponding L-corner for the backhoe scene whenp = 1 and SNR=10 dB.

Fig. 11. Conventional SAR image

20◦. Then, the maximum pixel magnitude among all subapertures is retained for each pixel location in the composite image.

In our experiments, we have observed that theλ choice in each subaperture image is very similar. Hence we have chosena λ

value in one subaperture image and then used thatλ for the reconstruction of all subaperture images. In a different scenario,

one may need to choose it separately for each subaperture.

Figures 9 and 10 show SURE, GCV curves, and the L-curve for 20 dB and 10 dB SNR, respectively, whenp = 1. Tables III

and IV display selectedλ values for three different noise levels whenp = 1 andp = 0.7, respectively.It can be observed that,

larger parameters are selected for data with lower SNR. This behavior makes sense from a Bayesian estimation-theoretic view

on image reconstruction: noisier data result in relatively more emphasis on the prior than the data through the use of a larger

regularization parameter.As in the synthetic example in Figure 2, L-curve chooses smaller parameters than SURE and GCV. To
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(a) (b) (c)

Fig. 12. Sparsity-driven images forp = 1 and (a) 30 dB, (b) 20 dB and (c) 10 dB. The following parameters are used from top to bottom:

Too smallλ, λSURE (SURE and GCV choices ofλ are almost the same and their reconstructions are visually indistinguishable therefore we

show one reconstruction for both), λL−curve, and too largeλ.

provide a visual comparison, we first present the conventional SAR image in Figure 11. Sparsity-driven SAR reconstructions

with parameters selected by SURE, GCV, and L-curve forp = 1 andp = 0.7 are shown in Figures 12 and 13, respectively.We

cannot carry out any quantitative performance analysis for this experiment since ground truth data are not directly available to

us.While our quantitative results on the synthetic scene experiments provide a useful characterization of the proposed methods,

further quantitative analysis on more complicated scenes, such as the backhoe, would be of interest in future work.

VI. CONCLUSION

We have considered the problem of automatic regularization parameter selection in sparsity-driven SAR imaging. We have

provided extensions of several parameter selection methods to be usedin SAR imaging and developed numerical algorithms for

automatic parameter selection in sparsity-driven imaging of complex-valued SAR reflectivity fields.

SURE and GCV are both aimed at estimating the predictive risk and in many cases the minimizers of the predictive risk and

the mean squared error of the solution are close. Under these conditions, we can conclude that SURE and GCV usually produce

satisfying results. Thus, their parameter choice leads to reasonable images when compared to the images where the regularization

parameter is selected manually.L-curve, on the other hand, tends to select slightly smaller parameters than those chosen by

SURE and GCV with less computational cost.Sparsity-driven backhoe images appear to be somewhat underregularized, but still
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(a) (b) (c)

Fig. 13. Sparsity-driven images forp = 0.7 and (a) 30 dB, (b) 20 dB and (c) 10 dB. The following parameters are used from top to bottom:

Too smallλ, λSURE (SURE and GCV choices ofλ are almost the same and their reconstructions are visually indistinguishable therefore we

show one reconstruction for both),λL−curve, and too largeλ.

provide a reasonable tradeoff between artifact suppression and feature preservation for all three methods.

Overall, this work has addressed an open problem in sparsity-driven SAR imaging. It is also general enough to be applied to

any complex-valuedℓp-norm regularized image reconstruction problem. The numerical tools we have developed can be used in

other types of large-scale problems. This study has provided mechanisms for automatic selection of the regularization parameter,

thus resulting in a new opportunity for advancement in the use of sparsity-driven SAR images in automatic target recognition

systems.
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