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Parameter Selection in Sparsity-driven SAR Imaging

Ozge Batu and Mijdat Cetin

Abstract

We consider a recently developed sparsity-driven syritegierture radar (SAR) imaging approach which can producersesp
olution, feature-enhanced images. However, this regaom-based approach requires the selection of a hypener in order to
generate such high-quality images. In this paper we presant®er of techniques for automatically selecting the hypeameter
involved in this problem. In particular, we propose and depaiumerical procedures for the use of Stein’s unbiased sgknation,
generalized cross-validation, and L-curve techniquesatdomatic parameter choice. We demonstrate and compare tioaveffiess
of these procedures through experiments based on both siymileetic scenes, as well as electromagnetically simulatelistie
data. Our results suggest that sparsity-driven SAR imagaugpled with the proposed automatic parameter choice proesdiffers

significant improvements over conventional SAR imaging.

Index Terms

parameter selection, synthetic aperture radar, sparsal sepresentation, non-quadratic regularization, geizexhcross-validation,

Stein’s unbiased risk estimator, L-curve.

I. INTRODUCTION

Conventional image formation techniques for synthetic aperture r&#eR) suffer from low resolution, speckle, and sidelobe
artifacts. These effects pose challenges for SAR images, in partictlan they are used in automatic target detection and
recognition tasks. Recently proposed SAR image formation algorithms haen shown to produce high quality images,
offering increased resolution and reduced artifacts [1], [2], [3¢ ¥¥nsider the sparsity-driven, non-quadratic regularization-
based approach of [1] which aims to produce feature-enhanced i®Ages.For a review of this approach as well as other
uses of sparsity-based ideas in radar imaging, seeTHg idea behind this approach is to emphasize appropriate features by
regularizing the solution. In fact, regularization methods are well knowneh widely used for real-valued image restoration
and reconstruction problems. However SAR imaging involves someuiféis in application of these methods. As an example,
SAR involves complex-valued reflectivities. Considering and addrgssinh difficulties, extensions of real-valued non-quadratic
regularization methods have been developed for SAR imaging [1].

Regularization methods, in general, try to balance the fidelity to data andkmriovledge to obtain a stable solution. This
stability is ensured through a scalar parameter which is called the regtiarizsrameter or hyper-parameter. Selection of
this parameter is a fundamental problem within a regularization framewdrire exist several approaches which are based
on statistical considerations such as Stein’s unbiased risk estimator {SBRIEeneralized cross-validation (GCV) [6], [7],

Bayesian methods [8], as well as graphical tools such as the L-cQfv#pst parameter choice methods have been developed
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in the context of the hyper-parameter choice problem for Tikhonoulaegation [10], which is a well-known and widely-used
quadratic regularization approach. The quadratic form of the optimizatiasiem in Tikhonov regularization results in a closed-
form solution, through a set of linear equations, which simplifies the ctatipn of the regularized solution and the automatic
selection of the regularization parameter. As the promise of sparsesegpiation has been discovered in a variety of fields such
as optical flow estimation [11], compressed sensing [12] and fundtiegeession [13], regularization constraints which impose
sparsity have become more prevalent. It has been shown that auadnatjc regularizer promotes sparsity in the solution (see
e.g., [14]). However, inclusion of such a non-quadratic constsa@itls an optimization problem without a closed-form solution.
Consequently, iterative procedures need to be used to compute the rsolatithis case, the selection of the regularization
parameter is more complicated than the quadratic case. For parameims thnon-quadratic regularization-based techniques,
the application of SURE, GCV, and L-curve is limited [15], [16], [8], [L[18]. Especially for the form of our problem which
considers ar/,-norm penalty withp < 1 for complex-valued inverse problems, the use and effectivenesisesé methods
have not been truly explored yet. We propose the use of SURE, G@\&urve in the sparsity-driven SAR image formation
framework [1] and develop a number of numerical tools for efficiemplementation of the methods considered. We present
the effectiveness of the applied methods through our experimentd baseoth simple synthetic data as well as the Air Force
Research Laboratory (AFRL) Backhoe Data Dome [19].

The organization of this paper is in the following manner. Sparsity-dri&&R imaging is formulated in Section Il. In Section
Ill, SURE, GCV, and L-curve are adapted to the form of our probl@ime optimization tools we propose are discussed in
Section IV. Finally, our experimental results are presented in Sectiomd ttee work in this paper is summarized in Section
VI.

II. SPARSITY-DRIVEN SAR IMAGING

We focus on the regularization-based SAR imaging framework praposél]. The framework of [1] relies on the SAR

observation process expressed in the following form:
g=Hf +w 1)

where H represents a complex-valued discrete SAR operatatands for additive white Gaussian ngigeand f are data and
the reflectivity field, respectively. In SAR imaging, one can obtain thec#¥lity field starting from various data domains such
as phase history, range profile or conventional image. Here, wepfimguce a conventional SAR image from SAR returns and
then use it as our dat@a In such a case, the SAR forward modélis a convolutional operator. The framework developed in
[1] involves mechanisms for improving sparsity of various featuremrelHwe consider one form of this approach that imposes
sparsity on the reflectivity field. In particular, to emphasize sparsity oféfectivities, the SAR image reconstruction problem

is formulated as the following optimization problem:
fx = argminy [lg — HfII3 + AL F1I7 - (2)

Here, A is the regularization parameteff||, denotes the/,-norm and is defined agf||, = (Zf |fi\p)1/p where f; is the

it" element off, n is the number of elements ifi. The first term in (2) is the data fidelity term which incorporates the SAR
observation model in (1), and thus information about the observatiomegy. The second term which is called the regularizer
or side constraint brings in the prior information we would like to impastaen one choosgs = 2 in this term, that leads to

the well-known Tikhonov regularization method [10]. Unlike the Tikhonppmach, the side constraint in our context is aimed
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at indicating a preference for sparsity; hence a choice otherptrar2 will be made.It has been known that minimu),-norm
reconstruction withp < 1 provides localized energy concentrations in the resultant image, angtbotes sparsity. In such
images, most elements are forced to be small, on the other hand, adellawed to have large values. The outcome of the
use of this term is teuppress image artifactsicrease the resolvability of scatterers, and result in a sparse ilBagk.sparsity
constraints have been shown to lead to superresolution [20]. A smaller @Bp puts a smaller penalty on large pixel values as
compared to a larger, and thus produces a field with a smaller number of nonzero pixel valigs that, in general, pixels in
the solution do not directly correspond to the scatterers in the reflectivityferause there could be multiple scatterers within
one pixel.

To avoid problems due to nondifferentiability of the objective function wifefor any is zero,a smooth approximation to

the ¢,-norm is used, and the objective function in (2) takes the following form:

w=llg—HfIZ+ 2D (1 +8)"" 3
i=1

where 3 is a small scalarAs long asg is small but positive, the minimizer of the above cost function vdtk 0 is close to
the minimizer obtained with = 0 [21]. However too small3 values increase the computation time required for the solution
of this optimization problem. In our experiments, we chogsempirically by considering this tradeoff. In particular, we pick
B8=10"".

Our goal now is to find the estimatg = argmin, ¥. We note that whemp > 1, this is a convex optimization problem. We

take the gradient ot with respect tof:
VU = —2H g+ 2H Hf + 22Ws (f) f 4)

whereW;s(f) is a diagonal weight matrix whosé&™ diagonal element i§ (\fi|2 + ﬂ) %71, and set the gradient equal to zero.

The solution of the optimization problem for any valuepofhould be a stationary point and should satisfy this equality:
(H'H + \Ws(fx)) fx=H'g (5)

The i diagonal element OW[}(fA) weights the intensity of the'” pixel by a spatially varying penalty. Since the weight
matrix depends orfy, the equation in (5) is not linear ifi, and (5) does not have a closed-form solution. However, one can

develop a fixed-point iteration [22fach step of which involves the solution of a linear problem:
(H'H 4+ AW (7)) (40 = 1T ©®)

Wherefi’“) is the solution obtained in the” iteration. Although equation (6), in principle, leads to a closed form solution for
fﬁ“”, this would require the inversion of a large matrix. Hence we solve thefssuations in (6) numerically by using the
conjugate gradient algorithm. This algorithm has been shown to be andedgerithm and is likely to converge to a minimum

of the cost function [23].

I1l. PARAMETER SELECTION

The objective function in (3) contains a scalar paramatarhich has a role in determining the behavior of the reconstructed
field. Small parameter values make the data fidelity term; i.e. first term)jrd@ninate the solution, whereas large values of
A emphasizehe ¢,-norm based penalty ternin order to generate an accurate high-quality image, it is necessatgiki® the
right balance between these two terms by choosing the valueapiproprately. To choosk in a data-driven way, we consider
three methods: SURE, GCV, and L-curve.
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1) SURE: SURE aims to minimize the following predictive risk, i.e. predictive meamased error:
A2
R)\: HHftTue_Hf)\H2~ (7)

Here, f, denotes the solution obtained by usihcand fi.... is the true, unknown field. Obviously, the predictive risk cannot
be calculated exactly since it depends fin... However, Stein’s method achieves an unbiased estimate of the predistv

[5], [24], by computing the expected value of this risk as:
Ry =no’ + ||e||2 4+ 20° Ve (8)

whereco? is the variance of the Gaussian white noisec = H fy —g andVe = > dei/Dg;. Here,e is a measure for the fitness

of the estimatefy to the observationy, and is usually called the residual. For standard Tikhonov solution, th@utation of

the gradient in (8) is straightforward since the regularized solution is arlfoeation of the data. However, when non-quadratic
regularization methods are considered, a nonlinear relation arisesdvetie data and the estimate and there does not exist a
closed-form solution for the estimate. In this case, it is more conveniemsdahe chain rule for evaluatinge and calculate

the risk estimate in the following forh15]:
Ry = —no” + |le|| + 202trace(H\1/f1\Iw ) 9)
2 ff fa

whereW ; ; = 9*W/ofof! is the Hessianand Wy, =0°W/0fdg". Then, provided that” is known or accurately estimated,
the problem reduces to finding the parametarvhich minimizes (9).
Starting from (9), we develop the SURE function for (3) as:

Ry = —no® + || Hjx — g, + 20trace(Tn) (10)

where
T ; Lot
Ty=H (2HH + \K(f»,8)) 2H (11)

and K (fx, 8) is a diagonal matrix whosé" diagonal element ig ((p — 1)[(f2):|* + 8) (I(£2)i|* + B) 572 In summary, the
goal is to find\ that minimizesRk, in (10), and consequently obtajf which is the image reconstructed with this parameter.
See [25] for more details.

2) GCV: The method of generalized cross-validation [6], [7] provides an estilficet A which approximately minimizes the

expected value of the predictive risk, withaeiquiring knowledgeof o. Let us define the so-called influence matrx as:
Hf\ = Axg. 12)

Then the GCV estimate of is the minimizer of (see [6]):
1 2
oo mlels 13
[LtracqI — A))]
The GCV method was originally designed for problems in whith is independent of;. If A, depends ory, then A, can

be approximated byid fx/dg, wheredfy/dg is the Jacobian of with respect tog [26]. (Note thatAy = Hdf»/dg if fr

is linearly dependent op.) Thus, we setd, = H@f}/ag. We also noteHafx/ag = H\IJJ;;\IJfg = T whereT) is given in
(11), and obtain the GCV function as: )
7 llealls

7 N— | LI
g [Ltrace T — TA)}Q

(14)

1For the sake of notational simplicity, we replafg with f in subscripts.
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3) L-curve: L-curve was first defined in the Tikhonov context as a paraméigic- log plot of the norm||fx|2, versus the
corresponding residual nonhth} — g||2, with the regularization parametéras the parameter [9]. Then, it was extended to
different regularization methods [27], [18h many applications, L-curve appears as an L-shaped curve asishd~igure 1
The corner of the L-shaped curve is considered as the region comgtajood parameter choices that balance the regularization
errors and perturbation errors jfs. The L-curve criterion for choosing the regularization parameter iscbas this feature.
Although this intuition is natural and quite simple, computing the corner of tleirke may not be straightforward. Several
ideas have been proposed to determine the corner including the poirdxdfnom curvature, the point closest to a reference
location, such as the origin [27], and the point of tangency with a line oeslop[18]. Below we adapt-curve to the parameter

selection problem in sparsity-driven SAR imaging, and develop our awoeplure for finding the corner.

IV. OPTIMIZATION TOOLS
A. Computation of SURE and GCV: Randomized Trace Estimation

For large scale problem§;, in (11) cannot be easily constructed due to the memory limitations of comsplitesuch cases,
it is more convenient to find an estimatetofice (%), which is what SURE and GCV need, without explicitly constructing
The method in [28] calculates an estimate of the trace of the influence matmegitarization of linear equations and enables
the use of the SURE and GCV methods in large-scale problems. The mmthdoke applied through the following algorithm:

1) generaté: independent realizationg of a white noise vector with zero mean and unit variance, where(1, ..., k},

2) computet; (\) = quAqi,

3) take the sample medn(\) = 211“:1 t; (\) /k to be the trace estimate.

This algorithm appears to have an explicit dependence on the nigtrixiowever, here we do not construgl explicitly.

All the matrix-vector products involved are actually carried out by cari@n operations (in the Fourier domain) such that
there is no need to construct the convolution matrix and deal with memtagsive matrix operationst is well known that

a conventional SAR image, which is the data in our case, can be desbwgth@ convolution of the original reflectivity field
with a sinc function [29]. Hence the operataf as well asH T in our problem are convolutional. Note thay itself is also a
convolutional operator. Therefore the computation required in stepf2eais also carried out through convolution operations.
Finally note that the computation @f, in (11) requires the inversion of a large matrix. Rather than performiagitiversion
explicitly, we perform numerical computation through the conjugate gnadikgorithm by posing this calculation as the problem
of solving a set of linear equations.

The accuracy of the trace estimate obtained through the 3-step preculwre depends on the variability of thé\)'s, and
this variability can be quantified in terms of the variance.of\). It has been shown that this variance is minimized by taking
the white noise; to bea random vector whose components are independent and take valaesl +1, with equal probability
[30].

B. Minimization of SURE and GCV: Golden Section Search

SURE and GCV are aimed at finding the value)ofwhich minimizes the expressions given in (10) and (13), respectively.
Note that the differentiation of these expressions is not straightforwaddtteese minimization problems do not have closed-
form solutions. One might consider a brute force search but we stadsidtake into account that evaluating points on SURE
and GCV curves is computationally demanding and one would prefer tgutenas few points as possiblBased on our

experience with these methods, SURE and GCV curves have a unintogztlise in most cases although, to our knowledge,
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there is no guarantee that this will always be the case. Even if they exhibitbdal behavior in their overall structure, due to
numerical approximations involved in their computation, the curves mighba strictly unimodal due to oscillations in some
parts, especially around small lambda values. Fortunately, these so#litions do not cause significant problems unless the
optimization method requires derivatives and small step size in its seklrehefore we employ golden section search which is
a derivative-free optimization method for unimodal functions [31]likéna gradient based approach, which seeks the minimum
with local movements, the golden section search approach has a mba glrspective and first aims to locate the general
basin of attraction. It then focuses on smaller regions in subsequ@st $tethis sense, it is less likely that it will be trapped
in local minima with large values of the function to be optimized, far away ftbm actual minimum. Of course, there is
no guarantee that it will perfectly locate the global minimum. We find the mimi8URE and GCV functions through the
following algorithm:
1) determine an initial interval = [Amin, Amas| (We start with a quite large initial interval, e.g.,= [10*87 102])
2) determine two test values;, A2 € I according to the golden ratie = 0.618
(since X covers a large range of values, we choose golden section in the logarihate), i.e.,
log A1 = log Amin + (1 — @) (10g Amaz — log Amin) and
log A2 = log Amin + @ (10g Amaz — log Amin)
3) computeR», and Ry, (Va, andVy,)
4) determine a new intervdl through golden section search, i.e.,

if RAQ — RM > (Va, — Vi, > ) (whered is a small positive constant) then

j - [)\mzny )\2}
else
f = [)\17 )\maa:}

5) setl = I and repeat starting from step 2 until the interval is sufficiently small (BgAmaz — 10g Amin = 1072)

C. Finding the L-corner

Evaluating points on the L-curve involves less computational cost sincees dot require the computation of the matrix
trace involved in SURE and GC\&till, it is desirable to compute as few points as possible. Besides, definingpther of the
L-curve is an important issue. Our approach involves the definition ahdi@n of an optimization problem for this task. In

particular, we determine the L-corner through the following algorithm:

1) let I = [I1, I>] denote the search interval forwhereI; and I, are the lower and the upper limits &f respectively.

2) set initial limits of the interval such thdy = \2,;,, and o = )2,

3) consider the\ valuesA® -t AE = A2l AN AL and L., = Ao4. — A wherek and! are iteration numbers,
and A\ is a predefined step size

4) compute slopes* 1, mk .., ml L, andm!,,, of the tangent lines at the points on the L-curve corresponding’ig,
AE AL and AL, respectively
(note that the derivatives are computed numerically)

5) if mb-l > mk . then

L = )‘fnzn

incrementk
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else
Amin = Npiin
and similarly,
it mbo L <ml,,. then
I = Naw
increment/
else
Amaz = Mmas
continue shrinking the interval by iterating through step 3 to 5.
(note that the conditions fdt and! in step 5 are performed independently in parallel as illustrated in Figure 1)
6) set a reference poitftro, yo) Which is the intersection point of the tangent lines\at;, and Aax
7) determine two test valueks;, A» € I according to the golden ratio
8) compute the residual norm,, = ||g — H fx,||3 and the solution norm,, = |, ]| fori =1,2
9) compute the distance frofry,, p»,) to the reference asl; = (logrx, — logzo)® + (log pa, — logyo)®
10) determine a new intervdl through golden section search, i.e.,

if d1 > d2 then

f = [)\17 )\'maz]
else
j = [)\mzny )\2}

11) setl = I and repeat starting from step 7 until the interval is sufficiently small

0
“7 %ylin 1

min

N> ) 2
Amin

Amin
&nam Agnax-
(IQ, Yo )‘( /\71rLaac
A(r)n%__x

llg — Hfill2

1515

Fig. 1. The generic form of the L-curve and path for L-cornearsh.

V. EXPERIMENTAL RESULTS

We demonstrate the effectiveness of the parameter choice algorithrhawgedescribed on both synthetic and electromag-
netically simulated realistic data. We present sparsity-driven SAR imagksealected parameters and compare these results to

different parameter choices and conventional reconstructions.
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A. Synthetic Scene

We first present experimental results on a synthetic example. As we km® ground truth, we can use this example to
provide a quantitative performance analysis in terms of the recongiracanesThe results we present on a single scene and a
single noise realization here are typical over multiple scenarios notriessbereThe complex-valued synthetic scene consists
of 9 randomly choserpoint scatterers as shown in Figure 2(a). Throughout our work, isglay the magnitude (in dB) of
the complex-valued reflectivities. Figures 2(b) and (c) show the pgirgasl function (PSF) of the SAR imaging system and
the conventional SAR image of the synthetic scene, respectively. Hereotlected SAR data involve bandlimited (through a
rectangular window) Fourier samples, and as a result, the PSF is a Z-fusition. The vertical spread of the PSF corresponds
to the resolution in the range direction in which the radar pulses are transnittechorizontal spread of the PSF corresponds
to the cross-range resolution. Thus, the conventional image is a filteratha@othed version of the true scene. We perform
experiments for different noise levels, adding complex Gaussian moige simulated SAR datdVe take the SNR to be the

power ratio of the noise-free data to noise in dB.

(a) (b) (©

Fig. 2. The plot of the magnitude of the (82 x 32 synthetic scene, (b) PSF and (c) conventional SAR image.

‘ SNR ||fff;||z ||Hffo}H§ SURE- GCV  L-curve
30dB | 0.024 0.028 0.028 0.004
20dB | 0.080 0.081 0.083 0.026
10dB |  0.302 0.271 0.342 0.104

TABLE |

VALUES OF PARAMETERA MINIMIZING VARIOUS COSTS FOR THE SYNTHETIC SCENE INFIGURE 2 WHEN P=1.

‘ SNR Hf—f;HZ HHf—Hf;Hz SURE- GCV  L-curve
30dB| 1.108 0.020 0.018 0.054
20dB | 1.720 0.162 0.173 0.125
10dB | 2.864 0.828 0.826 0.854

TABLE II

VALUES OF PARAMETERA MINIMIZING VARIOUS COSTS FOR THE SYNTHETIC SCENE INFIGURE 6, WHEN P=1.

Here, we consider sparsity-driven reconstructions with 1. Figure 3 shows the estimation errH)f,,me — fAHz predictive

risk || H firue — Hf}Hz as well as SURE and GCV curves for three different SNR values.BShid® a similar structure with
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Fig. 3. The estimation error, predictive risk, SURE and GC¥tdanctions for the synthetic image with (a) 30 dB, (b) 20 dBi ) 10 dB
SNR.

the predictive risk whereas GCV has a different structure. Note that G@ery flat around its minimum and this sometimes
makes it difficult to locate the minimum. Yete minima of SURE and GCV are clogethe minimum of the predictive risk. As
we have mentioned before, SURE and GCV estimate the predictive risl, ibufthe quality of the reconstruction is, naturally,
better measured by the estimation erilor.this example, the minima of the estimation error and the predictive riskiame

close, and as a result SURE and GCV provide good parameter choittes sense of minimizing the estimation errigure 4
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Fig. 4. L-curve and corresponding L-corner for the synthetiage with (a) 30 dB, (b) 20 dB and (c) 10 dB SNR.

shows the L-curve and corresponding L-corner. Note that for lowése levels, the corner of the L-curve is sharper, and thus it
is easier to locate the L-corner. Parameter choices of SURE, GCV aavie-are given and compared to the parameter values
minimizing the estimation error and the predictive risk in Table I. When coethéo the estimation error and the predictive
risk, SURE and GCV lead to very good parameter choices whereasve-chooses a smaller parametargeneral, the L-curve
choice of \ is 3 — 10 times smaller than those of SURE and GCV, and thus leads to less sparss.irmag observation that
L-curve usually leads to underregularization has been made by othevslb(see, e.g., [32]).

We now show the reconstruction results based on these parameters i@ Fidive observe that SAR images reconstructed
using the SURE, GCV, and L-curve parameters are very similar ariitbatistinguish visually. The reconstructed SAR image
is noisy when)\ is too small, and some of the scatterers are foond when X is too large. This confirms the need for a
parameter choice method. In addition, the similarity of the scenes recotestrthrough our parameter choice algorithms to the

scene reconstructed by tloptimal parameteR,piimum (Minimizing the estimation errorjas well as to the underlying true
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(a) (b) (©

Fig. 5. SAR reconstructions for (a) 30 dB, (b) 20 dB and (c) B0 @he following parameters are used from top to bottd®™ 2\ ptimaum.,

Aoptimum, Asure (SURE and GCV choices o are almost the same and their reconstructions are visuallgtinguishable therefore we

show one reconstruction for both)y, _ ¢y7ve, and 102/\0ptimum

scene demonstrates the success of our approach.

In certain cases, we have observed significant differences betiveeninima of the estimation error and the predictive risk.
An example of this occurs when we consider a different SAR imagingasi® where the resolution is very poor resulting in
a PSF as in Figure 6. In particular, in the 30 dB SNR case of the scenariguneFs, the minimum of the predictive risk is
attained at a significantly smaller value bfas compared to the estimation error, as shown in Figure 7. As SURE aWda@&C
based on the predictive risk, they also choose small parameter valdesay lead to underregularization in this case. In fact,
as shown in Table Il, SURE and GCV produce smaller parameters ttmamvie-for 30 dB and 10 dB SNR in this particular
scenario. The main difference between the scenario in Figure 2 andhéhim d-igure 6 is that the resolution is much lower in
the latter case. When we have high resolution (such that the pixel spadne resolution are close), the operatbris close

to unitary. When that is the case, the predictive risk and the estimation leaver a similar structure. On the other hand, in
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Fig. 6. The plot of the magnitude of the (82 x 32 synthetic scene, (b) PSF and (c) conventional SAR image.
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Fig. 7. The estimation error, predictive risk, SURE and GC¥tdanctions for the synthetic image in Figure 6 with 30 dB SNR.

scenarios such as the one in Figure 6, whiErés further away from being unitary, we are not guaranteed that the twesu

will have similar structures. This explains our empirical observations inekperiment in terms of the differences between the

minima of the predictive risk and the estimation error.

B. Realistic Data

Fig. 8.
our experiments.

December 15, 2010

SNR | SURE-GCV L-curve

30dB | 1.9x 1073 2.0x10~*

20dB | 3.6 x 1073 1.5x 103

10dB | 3.0 x 1072 7.8x 103
TABLE Il

Backhoe model used in Xpatch scattering predictidhg view to the right corresponds approximately to the vievihim images in

VALUES OF PARAMETERA MINIMIZING VARIOUS COSTS FOR THE BACKHOE SCENE WHEN R1.

DRAFT
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Fig. 9. (a) SURE and GCV curves, (b) L-curve and correspandicorner for the backhoe scene whenr= 1 and SNR=20 dB.

SNR | SURE-GCV L-curve
30dB | 8.6 x107° 7.6x107°
20dB | 46 x 1074 3.0x10%
10dB | 28 x 1073 1.7x 1073

TABLE IV
VALUES OF PARAMETERA MINIMIZING VARIOUS COSTS FOR THE BACKHOE SCENE WHEN ®0.7.

We now present 2-D image reconstruction experiments based on theoiie Research Laboratory (AFRL) Backhoe Data
Dome, which consists of simulated wideband (7-13 GHz), full polarizattmmplex backscatter data from a backhoe vehicle
in free space [19]. The backhoe model is shown in Figure 8. Thesbattier data are available over a full upper steradian
viewing hemisphereln our experiments, we use VV polarization data, centered at 10 GHiwath an azimuthal span of
110° and a peak elevation angle 86° (at azimuth center)Note that this is a wide-angle imaging scenario. Sparsity-driven
SAR imaging was extended and applied to SAR data collections that span amgd&ar aperture [33]. Here, we consider the
sparsity-driven composite imaging technique of [33] and show exjeatiah results based on this framework. In this framework,
the whole angular aperture is divided into subapertures and a sepaege immformed for each subapertuFar composite

imaging, we use 19 overlapping subapertures, with azimuth centeY§ &t,...,90°, and each with an azimuthal width of
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Fig. 10. (a) SURE and GCV curves, (b) L-curve and correspandi-corner for the backhoe scene wher= 1 and SNR=10 dB.

Fig. 11. Conventional SAR image

20°. Then, the maximum pixel magnitude among all subapertures is retaomezath pixel location in the composite image.
In our experiments, we have observed that thehoice in each subaperture image is very similar. Hence we have chosen
value in one subaperture image and then used XHat the reconstruction of all subaperture images. In a differentasagn
one may need to choose it separately for each subaperture.

Figures 9 and 10 show SURE, GCV curves, and the L-curve for 20ndB18 dB SNR, respectively, when= 1. Tables llI
and |V display selected values for three different noise levels whenr= 1 andp = 0.7, respectivelylt can be observed that,
larger parameters are selected for data with lower SNR. This behavi@snsgnse from a Bayesian estimation-theoretic view
on image reconstruction: noisier data result in relatively more emphasikeoprior than the data through the use of a larger

regularization parametefs in the synthetic example in Figure 2, L-curve chooses smaller paresrieten SURE and GCV. To
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Fig. 12. Sparsity-driven images fer= 1 and (a) 30 dB, (b) 20 dB and (c) 10 dB. The following parameteesused from top to bottom:

Too small\, Asyre (SURE and GCV choices of are almost the same and their reconstructions are visualigtimguishable therefore we
show one reconstruction for both) 1, _ c-ve, @and too large\.

provide a visual comparison, we first present the conventional SA&Ryénin Figure 11. Sparsity-driven SAR reconstructions
with parameters selected by SURE, GCV, and L-curvepfer 1 andp = 0.7 are shown in Figures 12 and 13, respectiviliz

cannot carry out any quantitative performance analysis for thisrempat since ground truth data are not directly available to
us. While our quantitative results on the synthetic scene experiments provisefal characterization of the proposed methods,

further quantitative analysis on more complicated scenes, such asdkieokawould be of interest in future work.

VI. CONCLUSION

We have considered the problem of automatic regularization paramégetice in sparsity-driven SAR imaging. We have
provided extensions of several parameter selection methods to bénuSAR imaging and developed numerical algorithms for
automatic parameter selection in sparsity-driven imaging of complexegeBAR reflectivity fields.

SURE and GCV are both aimed at estimating the predictive risk and in maeg the minimizers of the predictive risk and
the mean squared error of the solution are close. Under these conditi®rsn conclude that SURE and GCV usually produce
satisfying results. Thus, their parameter choice leads to reasonableswagn compared to the images where the regularization
parameter is selected manuallycurve, on the other hand, tends to select slightly smaller parametersthibae chosen by

SURE and GCV with less computational cdSparsity-driven backhoe images appear to be somewhat underiegd, but still
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Fig. 13. Sparsity-driven images fer= 0.7 and (a) 30 dB, (b) 20 dB and (c) 10 dB. The following parameteesused from top to bottom:
Too small\, Asyre (SURE and GCV choices of are almost the same and their reconstructions are visualigtimguishable therefore we

show one reconstruction for both);, _ cyrve, @nd too largei.

provide a reasonable tradeoff between artifact suppression anoegaeservation for all three methods.

Overall, this work has addressed an open problem in sparsity-dri&&ni®aging. It is also general enough to be applied to
any complex-valued,-norm regularized image reconstruction problem. The numerical toelbave developed can be used in
other types of large-scale problems. This study has provided meatsfos automatic selection of the regularization parameter,
thus resulting in a new opportunity for advancement in the use of spalbitgn SAR images in automatic target recognition

systems.
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