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Abstract

In this article, we study the question of the statistical convergence of the 1-dimensional
Mapper to its continuous analogue, the Reeb graph. We show that the Mapper is an optimal
estimator of the Reeb graph, which gives, as a byproduct, a method to automatically tune its
parameters and compute confidence regions on its topological features, such as its loops and
flares. This allows to circumvent the issue of testing a large grid of parameters and keeping the
most stable ones in the brute-force setting, which is widely used in visualization, clustering and
feature selection with the Mapper.

1 Introduction

In statistical learning, a large class of problems can be categorized into supervised or unsupervised
problems. For supervised learning problems, an output quantity Y must be predicted or explained
from the input measures X. On the contrary, for unsupervised problems there is no output quantity
Y to predict and the aim is to explain and model the underlying structure or distribution in the
data. In a sense, unsupervised learning can be thought of as extracting features from the data,
assuming that the latter come with unstructured noise. Many methods in data sciences can be
qualified as unsupervised methods, among the most popular examples are association methods,
clustering methods, linear and non linear dimension reduction methods and matrix factorization
to cite a few (see for instance Chapter 14 in Friedman et al. (2001)). Topological Data Analysis
(TDA) has emerged in the recent years as a new field whose aim is to uncover, understand and
exploit the topological and geometric structure underlying complex. and possibly high-dimensional
data. Most of TDA methods can thus be qualified as unsupervised. In this paper, we study a
recent TDA algorithm called Mapper which was first introduced in Singh et al. (2007).

Starting from a point cloud Xn sampled from a metric space X , the idea of Mapper is to study
the topology of the sublevel sets of a function f : Xn → R defined on the point cloud. The function
f is called a filter function and it has to be chosen by the user. The construction of Mapper depends
on the choice of a cover I of the image of f by open sets. Pulling back I through f gives an open
cover of the domain Xn. It is then refined into a connected cover by splitting each element into its
various clusters using a clustering algorithm whose choice is left to the user. Then, the Mapper is
defined as the nerve of the connected cover, having one vertex per element, one edge per pair of
intersecting elements, and more generally, one k-simplex per non-empty (k + 1)-fold intersection.

In practice, the Mapper has two major applications. The first one is data visualization and
clustering. Indeed, when the cover I is minimal, the Mapper provides a visualization of the data
in the form of a graph whose topology reflects that of the data. As such, it brings additional
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Figure 1: Bunch of Mappers computed with various parameters. Left: crater dataset. Right:
outputs of Mapper with various parameters. One can see that for some Mappers, (the ones with
purple squares), topological features suddenly appear and disappear. These are discretization
artifacts, that we overcome in this article by appropriately tuning the parameters.

information to the usual clustering algorithms by identifying flares and loops that outline potentially
remarkable subpopulations in the various clusters. See e.g. Yao et al. (2009); Lum et al. (2013);
Sarikonda et al. (2014); Hinks et al. (2015) for examples of applications. The second application
of Mapper deals with feature selection. Indeed, each feature of the data can be evaluated on its
ability to discriminate the interesting subpopulations mentioned above (flares, loops) from the rest
of the data, using for instance Kolmogorov-Smirnov tests. See e.g. Lum et al. (2013); Nielson et al.
(2015); Rucco et al. (2015) for examples of applications.

Unsupervised methods generally depend on parameters that need to be chosen by the user. For
instance, the number of selected dimensions for dimension reduction methods or the number of
clusters for clustering methods have to be chosen. Contrarily to supervised problems, it is tricky
to evaluate the output of unsupervised methods and thus to select parameters. This situation is
highly problematic with Mapper since, as for many TDA methods, it is not robust to outliers.
This major drawback of Mapper is an important obstacle to its use in Exploratory Data Analysis
with non trivial datasets. This phenomenon is illustrated for instance in Figure 1 on a dataset
that we study further in Section 5. The only answer proposed to this drawback in the literature
consists in selecting parameters in a range of values for which the Mapper seems to be stable—see
for instance Nielson et al. (2015). We believe that such an approach is not satisfactory because it
does not provide statistical guarantees on the inferred Mapper.

Our main goal in this article is to provide a statistical method to tune the parameters of Map-
per automatically. To select parameters for Mapper, or more generally to evaluate the significance
of topological features provided by Mapper, we develop a rigorous statistical framework for the
convergence of the Mapper. This contribution is made possible by the recent work (in a determin-
istic setting) of Carrière and Oudot (2016) about the structure and the stability of the Mapper.
In this article, the authors explicit a way to go from the input space to the Mapper using small
perturbations. We build on this relation between the input space and its Mapper to show that the
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Mapper is itself a measurable construction. In Carrière and Oudot (2016), the authors also show
that the topological structure of the Mapper can actually be predicted from the cover I by looking
at appropriate signatures that take the form of extended persistence diagrams. In this article, we use
this observation, together with an approximation inequality, to show that the Mapper, computed
with a specific set of parameters, is actually an optimal estimator of its continuous analogue, the
so-called Reeb graph. Moreover, these specific parameters act as natural candidates to obtain a
reliable Mapper with no artifacts, avoiding the computational cost of testing millions of candidates
and selecting the most stable ones in the brute-force setting of many practitioners. Finally, we also
provide methods to assess the stability and compute confidence regions for the topological features
of the Mapper. We believe that this set of methods open the way to an accessible and intuitive
utilization of Mapper for non expert researchers in applied topology.

Section 2 presents the necessary background on the Reeb graph and Mapper, and it also gives
an approximation inequality—Theorem 2.7—for the Reeb graph with the Mapper. From this
approximation result, we derive rates of convergences as well as candidate parameters in Section 3,
and we show how to get confidence regions in Section 4. Section 5 illustrates the validity of our
parameter tuning and confidence regions with numerical experiments on smooth and noisy data.

2 Approximation of a Reeb graph with Mapper

2.1 Background on the Reeb graph and Mapper

We start with some background on the Reeb graph and Mapper. In particular, we present the
specific Mapper algorithm that we study in this article.

Reeb graph. Let X be a topological space and let f : X → R be a continuous function. Such a
function on X is called a filter function in the following. Then, we define the equivalence relation
∼f as follows: for all x and x′ in X , x and x′ are in the same class (x ∼f x′) if and only if x and
x′ belong to the same connected component of f−1(y), for some y in the image of f .

Definition 2.1. The Reeb graph Rf (X ) of X computed with the filter function f is the quotient
space X/ ∼f endowed with the quotient topology.

See Figure 2 for an illustration. Note that, since f is constant on equivalence classes, there is
an induced map fR : Rf (X )→ R such that f = fR ◦ π, where π is the quotient map X → Rf (X ).

Rf(T )

Figure 2: Example of Reeb graph computed on the torus T with the height function f .
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The topological structure of a Reeb graph can be described if the pair (X , f) is regular enough.
From now on, we will assume that the filter function f : X → R is Morse-type. Morse-type functions
are generalizations of classical Morse functions that share some of their properties without having
to be differentiable (nor even defined over a smooth manifold):

Definition 2.2. A continuous real-valued function f on a compact space X is of Morse type if:

(i) There is a finite set Crit(f) = {a1 < ... < an}, called the set of critical values, such that
over every open interval (a0 = −∞, a1), ..., (ai, ai+1), ..., (an, an+1 = +∞) there is a compact
and locally connected space Yi and a homeomorphism µi : Yi × (ai, ai+1) → X (ai,ai+1) s.t.
∀i = 0, ..., n, f |X (ai,ai+1) = π2 ◦ µ−1

i , where π2 is the projection onto the second factor;

(ii) ∀i = 1, ..., n−1, µi extends to a continuous function µ̄i : Yi× [ai, ai+1]→ X [ai,ai+1] – similarly
µ0 extends to µ̄0 : Y0 × (−∞, a1] → X (−∞,a1] and µn extends to µ̄n : Yn × [an,+∞) →
X [an,+∞);

(iii) Each levelset X t has a finitely-generated homology.

Key fact 1a: For f : X → R a Morse-type function, the Reeb graph Rf (X ) is a multigraph.

For our purposes, in the following we further assume that X is a smooth and compact subman-
ifold of RD. The space of Reeb graphs computed with Morse-type functions over such spaces is
denoted R in this article.

Mapper. The Mapper is introduced in Singh et al. (2007) as a statistical version of the Reeb
graph Rf (X ) in the sense that it is a discrete and computable approximation of the Reeb graph
computed with some filter function. Assume that we observe a point cloud Xn = {X1, . . . , Xn} ⊂ X
with known pairwise dissimilarities. A filter function is chosen and can be computed on each point
of Xn. The generic version of the Mapper algorithm on Xn computed with the filter function f can
be summarized as follows:

1. Cover the range of values Yn = f(Xn) with a set of consecutive intervals I1, . . . , IS which
overlap.

2. Apply a clustering algorithm to each pre-image f−1(Is), s ∈ {1, ..., S}. This defines a pullback
cover C = {C1,1, . . . , C1,k1 , . . . , CS,1, . . . , CS,kS} of the point cloud Xn.

3. The Mapper is then the nerve of C. Each vertex vs,k of the Mapper corresponds to one element
Cs,k and two vertices vs,k and vs′,k′ are connected if and only if Cs,k ∩ Cs′,k′ is not empty.

Even for one given filter function, many versions of the Mapper algorithm can be proposed depend-
ing on how one chooses the intervals that cover the image of f , and which method is used to cluster
the pre-images. Moreover, note that the Mapper can be defined as well for continuous spaces. The
definition is strictly the same except for the clustering step, since the connected components of
each pre-image f−1(Is), s ∈ {1, ..., S} are now well-defined. See Figure 3.
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Mf(T#T, I)

Figure 3: Example of Mapper computed on the double torus T#T with the height function f and
a cover I of its range with four open intervals.

Our version of Mapper. In this article, we focus on a Mapper algorithm that uses neighborhood
graphs. Of course, more sophisticated versions of Mapper can be used in practice but then the
statistical analysis is more tricky. We assume that there exists a distance on Xn and that the matrix
of pairwise distances is available. First, from the distance matrix we compute the 1-skeleton of a
Rips complex with parameter δ, i.e. the δ-neighborhood graph built on top of Xn. This objet plays
the role of an approximation of the underlying and unknown metric space X on which the data are
sampled. Second, given Yn = f(Xn) the set of filter values, we choose a regular cover of Yn with
open intervals, where no more than two intervals can intersect at a time. More precisely, we use
open intervals with same length r: ∀s ∈ {1, . . . , S},

r = `(Is)

where ` is the Lebesgue measure on R. The overlap g between two consecutive intervals is also a
fixed constant: ∀s ∈ {1, . . . , S − 1},

0 < g =
`(Is ∩ Is+1)

`(Is)
<

1

2
.

The parameters g and r are generally called the gain and the resolution in the literature on the
Mapper algorithm. Finally, for the clustering step, we simply consider the connected components of
the pre-images f−1(Is) that are induced by the 1-skeleton of the Rips complex. The corresponding
Mapper is denoted Mr,g,δ(Xn,Yn) or Mn for short in the following. When dealing with a continuous
space X , there is no need to compute a neighborhood graph since the connected components are
well-defined, so we let Mr,g(X , f) denote such a Mapper.

Key fact 1b: The Mapper Mr,g,δ(Xn,Yn) is a combinatorial graph.

Moreover, following Carrière and Oudot (2015), we can define a function on the nodes of Mn

as follows.

Definition 2.3. Let v be a node of Mn, i.e. v represents a connected component of f−1(Is) for
some s ∈ {1, . . . , S}. Then, we let

fI(v) := mid(Ĩs),

where Ĩs := Is \ (Is ∩ Is−1) ∪ (Is ∩ Is+1) and mid(Ĩs) denotes the midpoint of the interval Ĩs.
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Filter functions. In practice, it is common to choose filter functions that are coordinate-independent,
in order to avoid depending on solid transformations of the data like rotations or translations. The
two most common filters that are used in the literature are:

• the eccentricity: x 7→ supy∈Xd(x, y),

• the eigenfunctions given by a Principal Component Analysis of the data.

2.2 Extended persistence signatures and the persistence metric d∆

In this section, we introduce extended persistence and its associated metric, the bottleneck distance,
which we will use later to compare Reeb graphs and Mappers.

Extended persistence. Given any graph G = (V,E) and a function attached to its nodes
f : V → R, the so-called extended persistence diagram Dg(G, f) is a multiset of points in the
Euclidean plane R2 that can be computed with extended persistence theory. Each of the diagram
points has a specific type, which is either Ord0, Rel1, Ext+

0 or Ext−1 . We refer the reader to
Appendix C for formal definitions and further details about extended persistence. A rigorous
connexion between the Mapper and the Reeb graph was drawn recently by Carrière and Oudot
(2016), who show how extended persistence provides a relevant and efficient framework to compare
a Reeb graph with a Mapper. We summarize below the main points of this work in the perspective
of the present article.

Topological dictionary. Given a topological space X and a Morse-type function f : X → R,
there is a nice interpretation of Dg(Rf (X ), fR) in terms of the structure of Rf (X ). Orienting the
Reeb graph vertically so fR is the height function, we can see each connected component of the
graph as a trunk with multiple branches (some oriented upwards, others oriented downwards) and
holes. Then, one has the following correspondences, where the vertical span of a feature is the span
of its image by fR:

• The vertical spans of the trunks are given by the points in Ext+
0 (Rf (X ), fR);

• The vertical spans of the branches that are oriented downwards are given by the points in
Ord0(Rf (X ), fR);

• The vertical spans of the branches that are oriented upwards are given by the points in
Rel1(Rf (X ), fR);

• The vertical spans of the holes are given by the points in Ext−1 (Rf (X ), fR).

These correspondences provide a dictionary to read off the structure of the Reeb graph from the
corresponding extended persistence diagram. See Figure 4 for an illustration.

Note that it is a bag-of-features type descriptor, taking an inventory of all the features (trunks,
branches, holes) together with their vertical spans, but leaving aside the actual layout of the fea-
tures. As a consequence, it is an incomplete descriptor: two Reeb graphs with the same persistence
diagram may not be isomorphic.
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Ext+0

Ord0

Rel1

Ext−1

Figure 4: Example of correspondences between topological features of a graph and points in its
corresponding extended persistence diagram. Note that ordinary persistence is unable to detect
the blue upwards branch.

Bottleneck distance. We now define the commonly used metric between persistence diagrams.

Definition 2.4. Given two persistence diagrams D,D′, a partial matching between D and D′ is a
subset Γ of D ×D′ such that:

∀p ∈ D, there is at most one p′ ∈ D′ s.t. (p, p′) ∈ Γ,

∀p′ ∈ D′, there is at most one p ∈ D s.t. (p, p′) ∈ Γ.

Furthermore, Γ must match points of the same type (ordinary, relative, extended) and of the same
homological dimension only. Let ∆ be the diagonal ∆ = {(x, x) | x ∈ R}. The cost of Γ is:

cost(Γ) = max

{
max
p∈D

δD(p), max
p′∈D′

δD′(p
′)

}
,

where

δD(p) = ‖p− p′‖∞ if ∃p′ ∈ D′ s.t. (p, p′) ∈ Γ, otherwise δD(p) = inf
q∈∆
‖p− q‖∞,

δD′(p
′) = ‖p− p′‖∞ if ∃p ∈ D s.t. (p, p′) ∈ Γ, otherwise δD′(p

′) = inf
q∈∆
‖p′ − q‖∞.

Definition 2.5. Let D,D′ be two persistence diagrams. The bottleneck distance between D and
D′ is:

d∆(D,D′) = inf
Γ

cost(Γ),

where Γ ranges over all partial matchings between D and D′.

Note that d∆ is only a pseudometric, not a true metric, because points lying on ∆ can be left
unmatched at no cost.
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Definition 2.6. Let G1 = (V1, E1) and G2 = (V2, E2) be two combinatorial graphs with real-valued
functions f1 : V1 → R and f2 : V2 → R attached to their nodes. The persistence metric d∆ between
the pairs (G1, f1) and (G2, f2) is:

d∆(G1, G2) := d∆ (Dg(G1, f1),Dg(G2, f2)) .

For a Morse-type function f defined on X and for a finite point cloud Xn ⊂ X , we can thus
consider Dg(Rf (X )) := Dg(Rf (X ), fR) and Dg(Mn) := Dg(Mn, fI), with fI as in Definition 2.3.
In this context the bottleneck distance d∆(Rf (X ),Mn) = d∆(Dg(Rf (X )),Dg(Mn)) is well defined
and we use this quantity to assess if the Mapper Mn is a good approximation of the Reeb graph
Rf (X ). Moreover, note that, even though d∆ is only a pseudometric, it has been shown to a be a
true metric locally for Reeb graphs by Carrière and Oudot (2017).

As noted in Carrière and Oudot (2015), the choice of fI is in some sense arbitrary since any
function defined on the nodes of the Mapper that respects the ordering of the intervals of I carries
the same information in its extended persistence diagram. To avoid this issue, Carrière and Oudot
(2016) define a pruned version of Dg(Rf (X ), fR) as a canonical descriptor for the Mapper. The
problem is that computing this canonical descriptor requires to know the critical values of fR be-
forehand. Here, by considering Dg(Mn, fI) instead, the descriptor becomes computable. Moreover,
one can see from the proofs in the Appendix that the canonical descriptor and its arbitrary version
actually enjoy the same rate of convergence, up to some constant.

Geometric quantity. Let π∆ : R2 → R2 be the projection onto ∆. We define emin(X , f) as the
smallest distance to the diagonal (in the `∞ norm) of the points of Ext−1 (Rf (X ), fR):

emin = min {‖p− π∆(p)‖∞ | p ∈ Ext−1 (Rf (X ), fR)}.

Intuitively, emin is the size of the smallest loop one can find in X . Hence, the larger emin(X , f),
the smoother X . This quantity plays an important role in the assumptions of our approximation
result—see Theorem 2.7 in Section 2.3.

2.3 An approximation inequality for Mapper

We are now ready to give the key ingredient of this paper to derive a statistical analysis of the
Mapper in Euclidean spaces. The ingredient is an upper bound on the bottleneck distance between
the Reeb graph of a pair (X , f) and the Mapper computed with the same filter function f and a
specific cover I of a sampled point cloud Xn ⊂ X . From now on, it is assumed that the underlying
space X is a compact submanifold of dimension d embedded in RD, and that the filter function f
is Morse-type on X .

Regularity of the filter function. Intuitively, approximating a Reeb graph computed with a
filter function f that has large variations is more difficult than for a smooth filter function, for some
notion of regularity that we now specify. Our result is given in a general setting by considering the
modulus of continuity of f . In our framework, f is assumed to be Morse-type and thus uniformly
continuous on the compact set X . Following for instance Section 6 in DeVore and Lorentz (1993),
we define the (exact) modulus of continuity of f by

ωf (δ) := sup
‖x−x′‖≤δ

|f(x)− f(x′)|
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for any δ > 0, where ‖ · ‖ denotes the Euclidean norm in RD. Then ωf satisfies :

1. ωf (δ)→ ω(0) = 0 as δ → 0 ;

2. ωf is non negative and non-decreasing on R+ ;

3. ωf is subadditive : ωf (δ1 + δ2) ≤ ωf (δ1) + ωf (δ2) for any δ1, δ2 > 0;

4. ωf is continous on R+.

We say that a function ω defined on R+ is a modulus of continuity if it satisfies the four properties
above and we say that it is a modulus of continuity of f if, in addition, we have

|f(x)− f(x′)| ≤ ω(‖x− x′‖),

for any x, x′ ∈ X .

Theorem 2.7. Assume that X is a compact submanifold of dimension d in RD with positive reach
rch and positive convexity radius ρ. Let Xn be a point cloud of n points, all lying in X . Assume
that the filter function f is Morse-type on X with emin = emin(X , f) > 0 and pmin = pmin(X , f) > 0.
Let ω be a modulus of continuity of f . If the three following conditions hold:

δ ≤ 1

4
min {rch, ρ} and ω(δ) ≤ 1

2
emin, (1)

max{|f(X)− f(X ′)| : X,X ′ ∈ Xn, ‖X −X ′‖ ≤ δ} ≤ gr, (2)

4dH(X ,Xn) ≤ δ, (3)

then the Mapper Mn = Mr,g,δ(Xn,Yn) with parameters r, g and δ is such that:

d∆ (Rf (X ),Mn) ≤ r

2
+ 2ω(δ). (4)

Remark 2.8. Studying the MultiNerve Mapper—as defined in Carrière and Oudot (2015)—instead
of the Mapper allows to weaken Assumption (2) since gr can be replaced by r in the corresponding
equation.

Analysis of the hypotheses. On the one hand, the scale parameter of the Rips complex could
not be smaller than the approximation error corresponding to the Hausdorff distance between the
sample and the underlying space X (Assumption (3)). On the other hand, it must be smaller
than the reach and convexity radius to provide a correct estimation of the geometry and topology
of X (Assumption (1)). The quantity gr corresponds to the minimum scale at which the filter’s
codomain is analyzed. This minimum resolution has to be compared with the regularity of the
filter at scale δ (Assumption (2)). Indeed the pre-images of a filter with strong variations will be
more difficult to analyze than when the filter does not vary too fast.

Analysis of the upper bound. The upper bound given in (4) makes sense in that the approxi-
mation error is controlled by the resolution level in the codomain and by the regularity of the filter.
If one uses a filter with strong variations, or if the grid in the codomain has a too rough resolution,
then the approximation will be poor. On the other hand, a sufficiently dense sampling is required
in order to take r small, as prescribed in the assumptions.
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Lipschitz filters. A large class of filters used for Mapper are actually Lipschitz functions and
of course, in this case, one can take ω(δ) = cδ for some positive constant c. In particular, c = 1
for linear projections (PCA, SVD, Laplacian or coordinate filter for instance). The distance to a
measure (DTM) is also a 1-Lipschitz function, see Chazal et al. (2011). On the other hand, the
modulus of continuity of filter functions defined from estimators, e.g. density estimators, is less
obvious although still well-defined.

Filter approximation. In some situations, the filter function f̂ used to compute the Mapper
is only an approximation of the filter function f with which the Reeb graph is computed. In this
context, the pair (Xn, f̂) appears as an approximation of the pair (X , f). The following result is
directly derived from Theorem 2.7 and Theorem 6.1 in Carrière and Oudot (2016) (that derives
stability for Mappers building on the stability theorem of extended persistence diagrams proved by
Cohen-Steiner et al. (2009)):

Corollary 2.9. Let f̂ : X → R be a Morse-type filter function approximating f . Assume that
Assumptions (1) and (3) of Theorem 2.7 are satisfied, and assume moreover that

max{{|f(X)− f(X ′)|, |f̂(X)− f̂(X ′)|} : X,X ′ ∈ Xn, ‖X −X ′‖ ≤ δ} ≤ gr. (5)

Then, the Mapper M̂n := Mr,g,δ(Xn, f̂(Xn)) built on Xn with filter function f̂ and parameters r, g, δ
satisfies:

d∆(Rf (X ), M̂n) ≤ 3r

2
+ 2ω(δ) + max

1≤i≤n
|f(Xi)− f̂(Xi)|.

3 Statistical Analysis of Mapper

From now on, the set of observations Xn is assumed to be composed of n independent points
X1, ..., Xn sampled from a probability distribution P in RD (endowed with its Borel algebra). We
assume that each point Xi comes with a filter value which is represented by a random variable Yi.
Contrarily to the Xi’s, the filter values Yi’s are not necessarily independent. In the following, we
consider two different settings: in the first one, Yi = f(Xi), where the filter f is a deterministic
function, in the second one, Yi = f̂(Xi) where f̂ is an estimator of the filter function f . In the
latter case, the Yi’s are obviously dependent. We first provide the following Proposition, whose
proof is deferred to Appendix A.4, which states that computing probabilities on the Mapper makes
sense:

Proposition 3.1. For any fixed choice of parameters r, g, δ and for any fixed n ∈ N, the function

Φ :

{
(RD)n × Rn → R

(Xn,Yn) 7→ Mr,g,δ(Xn,Yn)

is measurable.

3.1 Statistical Model for Mapper

In this section, we study the convergence of the Mapper for a general generative model and a class
of filter functions. We first introduce the generative model and next we present different settings
depending on the nature of the filter function.
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Generative model. The set of observations Xn is assumed to be composed of n independent
points X1, ..., Xn sampled from a probability distribution P in RD. The support of P is denoted
XP and is assumed to be a compact submanifold of RD with positive reach and positive convexity
radius, as in the setting of Theorem 2.7. We also assume that 0 < diam(XP) ≤ L. Next, the
probability distribution P is assumed to be (a, b)-standard for some constants a > 0 and b ≥ 1,
that is for any Euclidean ball B(x, t) centered on x ∈ X with radius t :

P (B(x, t)) ≥ min(1, atb).

This assumption is popular in the literature about set estimation (see for instance Cuevas, 2009;
Cuevas and Rodŕıguez-Casal, 2004). It is also widely used in the TDA literature (Chazal et al.,
2015b; Fasy et al., 2014; Chazal et al., 2015a). For instance, when b = D, this assumption is
satisfied when the distribution is absolutely continuous with respect to the Hausdorff measure on
XP. We introduce the set Pa,b = Pa,b,κ,ρ,L which is composed of all the (a, b)-standard probability
distributions for which the support XP is a compact submanifold of RD with reach larger than κ,
convexity radius larger than ρ and diameter less than L.

Filter functions in the statistical setting. The filter function f : XP 7→ R for the Reeb graph
is assumed as before to be a Morse-type function. Two different settings have to be considered
regarding how the filter function is defined. In the first setting, the same filter function is used to
define the Reeb graph and the Mapper. The Mapper can be defined by taking the exact values
of the filter function at the observation points f(X1), . . . , f(Xn). Note that this does not mean
that the function f is completely known since, in our framework, knowing f would imply to know
its domain and thus XP would be known which is of course not the case in practice. This first
setting is referred to as the exact filter setting in the following. It corresponds to the situations
where the Mapper algorithm is used with coordinate functions for instance. In the second setting,
the filter function used for the Mapper is not available and an estimation of this filter function has
to be computed from the data. This second setting is referred to as the inferred filter setting in
the following. It corresponds to PCA or Laplacian eigenfunctions, distance functions (such as the
DTM), or regression and density estimators.

Risk of Mapper. We study, in various settings, the problem of inferring a Reeb graph using
Mappers and we use the metric d∆ to assess the performance of the Mapper, seen as an estimator
of the Reeb graph:

E [d∆ (Mn,Rf (XP))] ,

where Mn is computed with the exact filter f or the inferred filter f̂ , depending on the context.

3.2 Reeb graph inference with exact filter and known generative model

We first consider the exact filter setting in the simplest situation where the parameters a and b of
the generative model are known. In this setting, for given Rips parameter δ, gain g and resolution
r, the Mapper Mn = Mr,g,δ(Xn,Yn) is computed with Yn = f(Xn). We now tune the triple of
parameters (r, g, δ) depending on the parameters a and b. Let Vn(δn) = max{|f(X) − f(X ′)| :
X,X ′ ∈ Xn, ‖X −X ′‖ ≤ δn}. We choose for g a fixed value in

(
1
3 ,

1
2

)
and we take:

δn = 8

(
2log(n)

an

)1/b

and rn =
Vn(δn)

g
.
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We give below a general upper bound on the risk of Mn with these parameters, which depends
on the regularity of the filter function and on the parameters of the generative model. We show a
uniform convergence over a class of possible filter functions. This class of filters necessarily depends
on the support of P, so we define the class of filters for each probability measure in Pa,b. For any
P ∈ Pa,b, we let F(P, ω) = F(P, ω, e) denote the set of filter functions f : XP → R such that f is
Morse-type on XP with ωf ≤ ω and such that emin(XP, f) > e.

Proposition 3.2. Let ω be a modulus of continuity of f such that ω(x)/x is a non-increasing
function on R+. For n large enough, the Mapper computed with parameters (rn, g, δn) defined
before satisfies

sup
P∈Pa,b

E

[
sup

f∈F(P,ω)
d∆ (Rf (XP),Mn)

]
≤ C ω(δn)

where the constant C only depends on a, b, and the geometric parameters of the model.

Assuming that ω(x)/x is non-increasing is not a very strong assumption. This property is sat-
isfied in particular for concave modulus of functions. Thus, one can consider the concave majorant
of ωf , when it is finite (see for instance Section 6 in DeVore and Lorentz (1993)). As expected,
we see that the rate of convergence of the Mapper to the Reeb graph directly depends on the
regularity of the filter function and on the parameter b which roughly represents the intrinsic di-
mension of the data. For Lipschitz filter functions, the rate is similar to the one for persistence
diagram inference Chazal et al. (2015b), namely it corresponds to the one of support estimation
for the Hausdorff metric (see for instance Cuevas and Rodŕıguez-Casal (2004)) and Genovese et al.
(2012a)). In the other cases where the filters only admit a concave modulus of continuity, we see
that the “distortion” created by the filter function slows down the convergence of the Mapper to
the Reeb graph.

We now give a lower bound that matches with the upper bound of Proposition 3.2.

Proposition 3.3. Let ω be a modulus of continuity of f . Then, for any estimator R̂n of Rf (XP),
we have

sup
P∈Pa,b

E

[
sup

f∈F(P,ω)
d∆

(
Rf (XP), R̂n

)]
≥ C ω

(
(an)−1/b

)
,

where the constant C only depends on a, b and the geometric parameters of the model.

Propositions 3.2 and 3.3 together show that, with the choice of parameters given before, Mn is
minimax optimal up to a logarithmic factor log(n) inside the modulus of continuity. Note that the
lower bound is also valid whether or not the coefficients a and b and the filter function f and its
modulus of continuity are given.

3.3 Reeb graph inference with exact filter and unknown generative model

We still assume that the exact values Yn = f(Xn) of the filter on the point could can be computed
and that at least an upper bound on the modulus of continuity of the filter is known. However,
the parameters a and b are not assumed to be known anymore. We adapt a subsampling approach
proposed by Fasy et al. (2014). As before, for given Rips parameter δ, gain g and resolution r, the
Mapper Mn = Mr,g,δ(Xn,Yn) is computed with Yn = f(Xn).
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We introduce the sequence sn := n
(logn)1+β

for some fixed value β > 0. Let X̂snn be an arbitrary

subset of Xn that contains sn points. We tune the triple of parameters (r, g, δ) as follows: we choose
for g a fixed value in

(
1
3 ,

1
2

)
and we take:

δn = dH(X̂snn ,Xn) and rn =
Vn(δn)

g
, (6)

where Vn is defined as in Section 3.2.

Proposition 3.4. Let ω be a modulus of continuity of f such that x 7→ ω(x)/x is a non-increasing
function. Then, using the same notations as in the previous section, the Mapper Mn computed with
parameters (rn, g, δn) defined before satisfies

sup
P∈Pa,b

E

[
sup

f∈F(P,ω)
d∆ (Rf (XP),Mn)

]
≤ C ω

(
log(n)2+β

n

)1/b

,

where the constant C only depends on a, b, and the geometric parameters of the model.

Up to logarithmic factors inside the modulus of continuity, we find that this Mapper is still
minimax optimal over the class Pa,b by Proposition 3.3.

3.4 Reeb graph inference with inferred filter and unknown generative model

One of the nice properties of Mapper is that it can easily be computed with any filter function,
including estimated filter functions such as PCA eigenfunctions, eccentricity functions, DTM func-
tions, Laplacian eigenfunctions, density estimators, regression estimators, and many other filters
directly estimated from the data. In this section, we assume that the true filter f is unknown
but can be estimated from the data using an estimator f̂ . As before, parameters a and b are not
assumed to be known and we have to tune the triple of parameters (rn, g, δn).

In this context, the quantity Vn cannot be computed as before because there is no direct access
to the values of f : we only know an estimation f̂ of it. However, in many cases, an upper bound
on the modulus of continuity of f is known, which makes possible the tuning of the parameters.
For instance, PCA (and kernel) projectors, eccentricity functions, DTM functions (see Chazal et al.
(2011)) are all 1-Lipschitz functions, and Corollary 3.5 below can be applied.

Let V̂n(δn) = max{|f̂(X)− f̂(X ′)| : X,X ′ ∈ Xn, ‖X −X ′‖ ≤ δn}, and let ω1 be a modulus of
continuity of f . Let

rn :=
max{ω1(δn), V̂n(δn)}

g
. (7)

Following the lines of the proof of Proposition 3.4 and applying Corollary 2.9, we obtain:

Corollary 3.5. Let f : X → R be a Morse-type filter function and let f̂ : X → R be a
Morse-type estimator of f . Assume that ω1 (resp. ω2) is a modulus of continuity of f (resp.
f̂). Let ω := max{ω1, ω2} such that x 7→ ω(x)/x is a non-increasing function. Let also M̂n :=
Mrn,g,δn(Xn, f̂(Xn)) be the Mapper built on Xn with function f̂ and parameters g, δn as in Equa-

tion (6), and rn as in Equation (7). Then, M̂n statisfies

E
[
d∆

(
Rf (XP), M̂n

)]
≤ Cω

(
log(n)2+β

n

)1/b

+ E
[

max
1≤i≤n

|f(Xi)− f̂(Xi)|
]
,

where C only depends on a, b, and the geometric parameters of the model.
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PCA eigenfunctions. In the setting of this article, the measure µ has a finite second moment.
Following Biau and Mas (2012), we define the covariance operator Γ(·) := E(〈X, ·〉X) and we let Πk

denote the orthogonal projection onto the space spanned by the k-th eigenvector of Γ. In practice,
we consider the empirical version of the covariance operator

Γ̂n(·) :=
1

n

n∑
i=1

〈Xi, ·〉Xi

and the empirical projection Π̂k onto the space spanned by the k-th eigenvector of Γ̂n. According
to Biau and Mas (2012)(see also Blanchard et al. (2007); Shawe-Taylor et al. (2005)), we have

E
[
‖Πk − Π̂k‖∞

]
= O

(
1√
n

)
.

This, together with Corollary 3.5 and the fact that both Πk and Π̂k are 1-Lipschitz, gives that the
rate of convergence of the Mapper of Π̂k(Xn) computed with parameters δn and g as in Equation (6),
and rn as in Equation (7), i.e. rn := g−1δn, satisfies

E
[
d∆

(
RΠk(XP),Mrn,g,δn(Xn, Π̂k(Xn))

)]
.

(
log(n)2+β

n

)1/b

∨ 1√
n
.

Hence, the rate of convergence of Mapper is not deteriorated by using Π̂k instead of Πk if the
intrinsic dimension b of the support of X is at least 2.

The distance to measure. It is well known that TDA methods may fail completely in the
presence of outliers. To address this issue, Chazal et al. (2011) introduced an alternative distance
function which is robust to noise, the distance-to-a-measure (DTM). A similar analysis as with the
PCA filter can be carried out with the DTM filter using the rates of convergence proven in Chazal
et al. (2016b).

4 Confidence sets for Reeb signatures

4.1 Confidence sets for extended persistence diagrams

In practice, computing a Mapper Mn and its signature Dg(Mn, fI) is not sufficient: we need to
know how accurate these estimations are. One natural way to answer this problem is to provide a
confidence set for the Mapper using the bottleneck distance. For α ∈ (0, 1), we look for some value
ηn,α such that

P (d∆(Mn,Rf (XP)) ≥ ηn,α) ≤ α
or at least such that

lim sup
n→∞

P (d∆(Mn,Rf (XP)) ≥ ηn,α) ≤ α.

Let
Mα := {R ∈ R | d∆(Mn,R) ≤ α}

be the closed ball of radius α in the bottleneck distance and centered at the Mapper Mn in the
space of Reeb graphs R. Following Fasy et al. (2014), we can visualize the signatures of the points
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belonging to this ball in various ways. One first option is to center a box of side length 2α at each
point of the extended persistence diagram of Mn—see the right columns of Figure 5 and Figure 6
for instance. An alternative solution is to visualize the confidence set by adding a band at (vertical)
distance ηn,α/2 from the diagonal (the bottleneck distance being defined for the `∞ norm). The
points outside the band are then considered as significant topological features, see Fasy et al. (2014)
for more details.

Several methods have been proposed in Fasy et al. (2014) and Chazal et al. (2014) to define
confidence sets for persistence diagrams. We now adapt these ideas to provide confidence sets for
Mappers. Except for the bottleneck bootstrap (see further), all the methods proposed in these two
articles rely on the stability results for persistence diagrams, which say that persistence diagrams
equipped with the bottleneck distance are stable under Hausdorff or Wasserstein perturbations of
the data. Confidence sets for diagrams are then directly derived from confidence sets in the sample
space. Here, we follow a similar strategy using Theorem 2.7, as explained in the next section.

4.2 Confidence sets derived from Theorem 2.7

In this section, we always assume that an upper bound ω on the exact modulus of continuity
ωf of the filter function is known. We start with the following remark: if we can take δ of the
order of dH(XP,Xn) in Theorem 2.7 and if all the conditions of the theorem are satisfied, then
d∆(Mn,Rf (XP)) can be bounded in terms of ω(dH(XP,Xn)). This means that we can adapt the
methods of Fasy et al. (2014) to Mappers.

Known generative model. Let us first consider the simplest situation where the parameters a
an b are also known. Following Section 3.2, we choose for g a fixed value in

(
1
3 ,

1
2

)
and we take

δn = 8

(
2log(n)

an

)1/b

and rn =
Vn(δn)

g
,

where Vn is defined as in Section 3.2. Let εn = dH(XP,Xn). As shown in the proof of Proposition 3.2
(see Appendix A.5), for n large enough, Assumption (1) and (2) are always satisfied and then

P (d∆(Mn,Rf (XP)) ≥ η) ≤ P
(
δn ≥ ω−1

(
η

(2g)−1 + 2

))
.

Consequently,

P (d∆(Mn,Rf (XP)) ≥ η) ≤ P (d∆(Mn,Rf (XP)) ≥ η ∩ εn ≤ 4δn) + P (εn > 4δn)

≤ Iω(δn)≥ 2g
1+4g

η + min

{
1,

2b

2log(n)n

}
=: Φn(η).

where Φn depends on the parameters of the model (or some bounds on these parameters) which
are here assumed to be known. Hence, given a probability level α, one has:

P
(
d∆(Mn,Rf (XP)) ≥ Φ−1

n (α)
)
≤ α.
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Unknown generative model. We now assume that a and b are unknown. To compute confi-
dence sets for the Mapper in this context, we approximate the distribution of dH(XP,Xn) using the
distribution of dH(X̂snn ,Xn) conditionally to Xn. There are N1 =

(
n
sn

)
subsets of size sn inside Xn,

so we let X1
sn , . . . ,X

N1
sn denote all the possible configurations. Define

Ln(t) =
1

N1

N1∑
k=1

IdH(Xksn ,Xn)>t.

Let s be the function on N defined by s(n) = sn and let s2
n := s(s(n)). There are N2 =

(
n
s2n

)
subsets

of size s2
n inside Xn. Again, we let Xks2n , 1 ≤ k ≤ N2, denote these configurations and we also

introduce

Fn(t) =
1

N2

N2∑
k=1

I
dH

(
Xk
s2n
,Xsn

)
>t
.

Proposition 4.1. Let η > 0. Then, one has the following confidence set:

P (d∆(Rf (XP),Mn) ≥ η) ≤ Fn
(

1

4
ω−1

(
2g

1 + 4g
η

))
+ Ln

(
1

4
ω−1

(
2g

1 + 4g
η

))
+ o

(sn
n

)1/4
.

Both Fn and Ln can be computed in practice, or at least approximated using Monte Carlo
procedures. The upper bound on P (d∆(Rf (XP),Mn) ≥ η) then provides an asymptotic confidence
region for the persistence diagram of the Mapper Mn, which can be explicitly computed in practice.
See the green squares in the first row of Figure 5. The main drawback of this approach is that
it requires to know an upper bound on the modulus of continuity ω and, more importantly, the
number of observations has to be very large, which is not the case on our examples in Section 5.

Modulus of continuity of the filter function. As shown in Proposition 4.1, the modulus of
continuity of the filter function is a key quantity to describe the confidence regions. Inferring the
modulus of continuity of the filter from the data is a tricky problem. Fortunately, in practice, even
in the inferred filter setting, the modulus of continuity of the function is known in many situations.
For instance, projections such as PCA eigenfunctions and DTM functions are 1-Lipschitz.

4.3 Bottleneck Bootstrap

The two methods given before both require an explicit upper bound on the modulus of continuity
of the filter function. Moreover, these methods both rely on the approximation result Theorem 2.7,
which often leads to conservative confidence sets. An alternative strategy is the bottleneck boot-
strap introduced in Chazal et al. (2014), and which we now apply to our framework.

The bootstrap is a general method for estimating standard errors and computing confidence
intervals. Let Pn be the empirical measure defined from the sample (X1, Y1), . . . , (Xn, Yn). Let
(X∗1 , Y

∗
1 ) . . . , (X∗n, Y

∗
n ) be a sample from Pn and let also M∗n be the random Mapper defined from

this sample. We then take for η̂α the quantity η̂∗α defined by

P (d∆(M∗n,Mn) > η̂∗α |X1, . . . , Xn) = α. (8)

Note that η̂∗α can be easily estimated with Monte Carlo procedures. It has been shown in Chazal
et al. (2014) that the bottleneck bootstrap is valid when computing the sublevel sets of a density
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estimator. The validity of the bottleneck bootstrap has not been proven for the extended persistence
diagram of any distance function. For Mapper, it would require to write d∆(M∗n,Mn) in terms of
the distance between the extrema of the filter function and the ones of the interpolation of the filter
function on the Rips. We leave this problem open in this article.

Extension of the analysis. As pointed out in Section 2.1, many versions of the discrete Mapper
exist in the literature. One of them, called the edge-based version M∆

r,g,δ(Xn,Yn), is described in
Section 7 of (Carrière and Oudot (2015)). The main advantage of this edge-based version is that it
allows for finer resolutions than the usual Mapper while remaining fast to compute. Our analysis
can actually handle this edge-based version as well by replacing gr by r in Assumption (2) of
Theorem 2.7—see Remark 2.8, and changing constants accordingly in the proofs. In particular,
this improves the resolution rn in Equation (6) since g−1Vn(δn) becomes Vn(δn). Hence, we use
this edge-based version in Section 5, where this improvement on the resolution rn allows us to
compensate for the low number of observations in some datasets.

5 Numerical experiments

In this section, we provide few examples of parameter selections and confidence regions (which are
union of squares in the extended persistence diagrams) obtained with bottleneck bootstrap. The
interpretation of these regions is that squares that intersect the diagonal, which are drawn in pink
color, represent topological features in the Mappers that may be horizontal or artifacts due to the
cover, and that may not be present in the Reeb graph. We show in Figure 5 various Mappers (in
each node of the Mappers, the left number is the cluster ID and the right number is the number
of observations in that cluster) and 85 percent confidence regions computed on various datasets.
All δ parameters and resolutions were computed with Equation (6) (the δ parameters were also
averaged over N = 100 subsamplings with β = 0.001), and all gains were set to 40%. The code we
used is expected to be added in the next release of The GUDHI Project (2015), and should then be
available soon. The confidence regions were computed by bootstrapping data 100 times. Note that
computing confidence regions with Proposition 4.1 is possible, but the numbers of observations in
all of our datasets were too low, leading to conservative confidence regions that did not allow for
interpretation.

5.1 Mappers and confidence regions

Synthetic example. We computed the Mapper of an embedding of the Klein bottle into R4 with
10,000 points with the height function. In order to illustrate the conservativity of confidence regions
computed with Proposition 4.1, we also plot these regions for an embedding with 10,000,000 points
using the fact that the height function is 1-Lipschitz. Corresponding squares are drawn in green
color. Their very large sizes show that Proposition 4.1 requires a very large number of observations
in practice. See the first row of Figure 5.

3D shapes. We computed the Mapper of an ant shape and a human shape from Chen et al.
(2009) embedded in R3 (with 4,706 and 6,370 points respectively) Both Mappers were computed
with the height function. One can see that the confidence squares for the features that are almost
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horizontal (such as the small branches in the Mapper of the ant) intersect indeed the diagonal. See
the second and third rows of Figure 5.

Miller-Reaven dataset. The first dataset comes from the Miller-Reaven diabetes study that
contains 145 observations of patients suffering or not from diabete. Observations were mapped
into R5 by computing various medical features. Data can be obtained in the “locfit” R-package.
In Reaven and Miller (1979), the authors identified two groups of diseases with the projection pur-
suit method, and in Singh et al. (2007), the authors applied Mapper with hand-crafted parameters
to get back this result. Here, we normalized the data to zero mean and unit variance, and we
obtained the two flares in the Mapper computed with the eccentricity function. Moreover, these
flares are at least 85 percent sure since the confidence squares on the corresponding points in the
extended persistence diagrams do not intersect the diagonal. See the first row of Figure 6.

COIL dataset. The second dataset is an instance of the 16,384-dimensional COIL dataset Nene
et al. (1996). It contains 72 observations, each of which being a picture of a duck taken at a specific
angle. Despite the low number of observations and the large number of dimensions, we managed
to retrieve the intrinsic loop lying in the data using the first PCA eigenfunction. However, the low
number of observations made the bootstrap fail since the confidence squares computed around the
points that represent this loop in the extended persistence diagram intersect the diagonal. See the
second row of Figure 6.

5.2 Noisy data

Denoising Mapper. An important drawback of Mapper is its sensitivity to noise and outliers.
See the crater dataset in Figure 7, for instance. Several answers have been proposed for recovering
the correct persistence homology from noisy data. The idea is to use an alternative filtration of
simplical compexes instead of the Rips filtration. A first option is to consider the upper level sets
of a density estimator rather then the distance to the sample (see Section 4.4 in Fasy et al. (2014)).
Another solution is to consider the sublevel sets of the DTM and apply persistence homology
inference in Chazal et al. (2014).

Crater dataset. To handle noise in our crater dataset, we simply smoothed the dataset by
computing the empirical DTM with 10 neighbors on each point and removing all points with
DTM less than 40 percent of the maximum DTM in the dataset. Then we computed the Mapper
with the height function. One can see that all topological features in the Mapper that are most
likely artifacts due to noise (like the small loops and connected components) have corresponding
confidence squares that intersect the diagonal in the extended persistence diagram. See Figure 7.

6 Conclusion

In this article, we provided a statistical analysis of the Mapper. Namely, we proved the fact
that the Mapper is a measurable construction in Proposition 3.1, and we used the approximation
Theorem 2.7 to show that the Mapper is a minimax optimal estimator of the Reeb graph in various
contexts—see Propositions 3.2, 3.3 and 3.4—and that corresponding confidence regions can be
computed—see Proposition 4.1 and Section 4.3. Along the way, we derived rules of thumb to
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Figure 5: Mappers computed with automatic tuning (middle) and 85 percent confidence regions
for their topological features (right) are provided for an embedding of the Klein Bottle into R4

(first row), a 3D human shape (second row) and a 3D ant shape (third row).
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Figure 6: Mappers computed with automatic tuning (middle) and 85 percent confidence regions
for their topological features (right) are provided for the Reaven-Miller dataset (first row) and the
COIL dataset (second row).
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Figure 7: Mappers computed with automatic tuning (middle) and 85 percent confidence regions
for their topological features (right) are provided for a a noisy crater in the Euclidean plane.
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automatically tune the parameters of the Mapper with Equation (6). Finally, we provided few
examples of our methods on various datasets in Section 5.

Future directions. We plan to investigate several questions for future work.

• We will work on adapting results from Chazal et al. (2014) to prove the validity of bootstrap
methods for computing confidence regions on the Mapper, since we only used bootstrap
methods empirically in this article.

• We believe that using weighted Rips complexes Buchet et al. (2015) instead of the usual Rips
complexes would improve the quality of the confidence regions on the Mapper features, and
would probably be a better way to deal with noise that our current solution.

• We plan to adapt our statistical setting to the question of selecting variables, which is one of
the main applications of the Mapper in practice.

A Proofs

A.1 Preliminary results

In order to prove the results of this article, we need to state several preliminary definitions and the-
orems. All of them can be found, together with their proofs, in Dey and Wang (2013) and Carrière
and Oudot (2015). In this section, we let Xn ⊂ X be a point cloud of n points sampled on a
submanifold X embedded in RD, with positive reach rch and convexity radius ρ. Let f : X → R be
a Morse-type filter function such that emin(X , f) > 0, I be a minimal open cover of the range of f
with resolution r and gain g, |Ripsδ(Xn)| denote a geometric realization of the Rips complex built
on top of Xn with parameter δ, and fPL : |Ripsδ(Xn)| → R be the piecewise-linear interpolation of
f on the simplices of Ripsδ(Xn).

Definition A.1. Let G = (Xn, E) be a graph built on top of Xn. Let e = (X,X ′) ∈ E be an edge of
G, and let I(e) be the open interval (min{f(X), f(X ′)},max{f(X), f(X ′)}). Then e is said to be
intersection-crossing if there is a pair of consecutive intervals I, J ∈ I such that ∅ 6= I ∩ J ⊆ I(e).

Theorem A.2. Let Rips1
δ(Xn) denote the 1-skeleton of Ripsδ(Xn). If Rips1

δ(Xn) has no intersection-
crossing edges, then Mr,g,δ(Xn, f(Xn)) and Mr,g(|Ripsδ(Xn)|, fPL) are isomorphic as combinatorial
graphs.

Theorem A.3. Let f : X → R be a Morse-type function. Then, we have the following inequality
between extended persistence diagrams:

d∆(Dg(Rf (X ), fR),Dg(Mr,g(X , f), fI)) ≤
r

2
. (9)

Moreover, given another Morse-type function f̂ : X → R, we have the following inequality:

d∆(Dg(Mr,g(X , f), fI),Dg(Mr,g(X , f̂), f̂I)) ≤ r + ‖f − f̂‖∞. (10)

Theorem A.4. If 4dH(X ,Xn) ≤ δ ≤ min{rch/4, ρ/4} and ω(δ) ≤ emin/2, then

d∆(Dg(Rf (X ), fR),Dg(RfPL(|Ripsδ(Xn)|), fPL
R )) ≤ 2ω(δ).

Note that the original version of this theorem is only proven for Lipschitz functions in Dey and
Wang (2013), but it extends at no cost to functions with modulus of continuity.
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A.2 Proof of Theorem 2.7

Let |Ripsδ(Xn)| denote a geometric realization of the Rips complex built on top of Xn with parameter
δ. Moreover, let fPL : |Ripsδ(Xn)| → R be the piecewise-linear interpolation of f on the simplices
of Ripsδ(Xn), whose 1-skeleton is denoted by Rips1

δ(Xn). Since (|Ripsδ(Xn)|, fPL) is a metric space,
we also consider its Reeb graph RfPL(|Ripsδ(Xn)|), with induced function fPL

R , and its Mapper

Mr,g(|Ripsδ(Xn)|, fPL), with induced function fPL
I . See Figure 8. Then, the following inequalities

lead to the result:

d∆(Rf (X ),Mn) = d∆ (Dg(Rf (X ), fR),Dg(Mn, fI))

= d∆

(
Dg(Rf (X ), fR),Dg(Mr,g(|Ripsδ(Xn)|, fPL), fPL

I )
)

(11)

≤ d∆

(
Dg(Rf (X ), fR),Dg(RfPL(|Ripsδ(Xn)|), fPL

R )
)

+ d∆

(
Dg(RfPL(|Ripsδ(Xn)|), fPL

R ),Dg(Mr,g(|Ripsδ(Xn)|, fPL), fPL
I )
)

(12)

≤ 2ω(δ) +
r

2
. (13)

Let us prove every (in)equality:

Equality (11). Let X1, X2 ∈ Xn such that (X1, X2) is an edge of Rips1
δ(Xn) i.e. ‖X1−X2‖ ≤ δ.

Then, according to (2): |f(X1) − f(X2)| ≤ gr. Hence, there is no s ∈ {1, . . . , S − 1} such that
Is ∩ Is+1 ⊆ [min{f(X1), f(X2)},max{f(X1), f(X2)}]. It follows that there are no intersection-
crossing edges in Rips1

δ(Xn). Then, according to Theorem A.2, there is a graph isomorphism
i : Mn = Mr,g,δ(Xn, f(Yn)) → Mr,g(|Ripsδ(Xn)|, fPL). Since fI = fPL

I ◦ i by definition of fI and
fPL
I , the equality follows.

Inequality (12). This inequality is just an application of the triangle inequality.

Inequality (13). According to (1), we have ω(δ) ≤ emin/2 and δ ≤ min{rch/4, ρ/4}. Aac-
cording to (3), we also have δ ≥ 4dH(X ,Xn). Hence, we have

d∆(Dg(Rf (X ), fR),Dg(RfPL(|Ripsδ(Xn)|), fPL
R )) ≤ 2ω(δ),

according to Theorem A.4. Moreover, we have

d∆(Dg(RfPL(|Ripsδ(Xn)|), fPL
R ),Dg(Mr,g(|Ripsδ(Xn)|, fPL), fPL

I )) ≤ r

2
,

according to Equation (9).

A.3 Proof of Corollary 2.9

Let |Ripsδ(Xn)| denote a geometric realization of the Rips complex built on top of Xn with parameter
δ. Moreover, let fPL : |Ripsδ(Xn)| → R be the piecewise-linear interpolation of f on the simplices
of Ripsδ(Xn), whose 1-skeleton is denoted by Rips1

δ(Xn). Similarly, let f̂PL be the piecewise-
linear interpolation of f̂ on the simplices of Rips1

δ(Xn). As before, since (|Ripsδ(Xn)|, fPL) and
(|Ripsδ(Xn)|, f̂PL) are metric spaces, we also consider their Mappers Mr,g(|Ripsδ(Xn)|, fPL) and

Mr,g(|Ripsδ(Xn)|, f̂PL). Then, the following inequalities lead to the result:
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f fR

fPL fPL
R

fPL
I

fI

Figure 8: Examples of the function defined on the original space (left column), its induced function
defined on the Reeb graph (middle column) and the function defined on the Mapper (right column).
Note that the Mapper computed from the geometric realization of the Rips complex (middle row,
right) is not isomorphic to the standard Mapper (third row, right), since there is an intersection-
crossing edge in the neighborhood graph.
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d∆(Rf (X ), M̂n) ≤ d∆(Rf (X ),Mn) + d∆(Mn, M̂n) by the triangle inequality

= d∆(Rf (X ),Mn) + d∆(Mr,g(|Ripsδ(Xn)|, fPL),Mr,g(|Ripsδ(Xn)|, f̂PL)) (14)

≤ r

2
+ 2ω(δ) + d∆(Mr,g(|Ripsδ(Xn)|, fPL),Mr,g(|Ripsδ(Xn)|, f̂PL)) by Theorem 2.7

≤ r

2
+ 2ω(δ) + r + ‖fPL − f̂PL‖∞ by Equation (10)

=
3r

2
+ 2ω(δ) + max{|f(X)− f̂(X)| : X ∈ Xn}

Let us prove Equality (14). By definition of r, there are no intersection-crossing edges for both
f and f̂ . According to Theorem A.2, Mr,g(|Ripsδ(Xn)|, fPL) and Mn are isomorphic and similarly

for Mr,g(|Ripsδ(Xn)|, f̂PL) and M̂n. See also the proof of Equality 11.

A.4 Proof of Proposition 3.1

We check that not only the topological signature of Mapper but also Mapper itself is a measur-
able object and thus can be seen as an estimator of a target Reeb graph. This problem is more
complicated than for the statistical framework of persistence diagram inference, for which the ex-
isting stability results give for free that persistence estimators are measurable for adequate sigma
algebras.

Let R̄ = R ∪ {−∞,+∞} denote the extended real line. Given a fixed integer n ≥ 1, let C[n] be
the set of abstract simplicial complexes over a fixed set of n vertices. We see C[n] as a subset of the

power set 22[n] , where [n] = {1, · · · , n}, and we implicitly identify 2[n] with the set [2n] via the map
assigning to each subset {i1, · · · , ik} the integer 1 +

∑k
j=1 2ij−1. Given a fixed parameter δ > 0, we

define the application

Φ1 :

{
(RD)n × Rn → C[n] × R̄2n

(Xn,Yn) 7→ (K, f)

where K is the abstract Rips complex of parameter δ over the n labeled points in RD, minus the
intersection-crossing edges and their cofaces, and where f is a function defined on the simplices
of K by

f :


2n → R̄

σ 7→
{

maxi∈σ Yi if σ ∈ K
+∞ otherwise.

The space (RD)n × Rn is equipped with the standard topology, denoted by T1, inherited from
R(D+1)n. The space C[n]× R̄2n is equipped with the product of the discrete topology on C[n] and the
topology induced by the extended distance d∞(f, g) := max{|f(σ)−g(σ)| : σ ∈ 2n, f(σ) or g(σ) 6=
+∞} on R̄2n . This product is denoted by T2 hereafter.

Note that the map (Xn,Yn) 7→ K is piecewise-constant, with jumps located at the hypersurfaces
defined by ‖Xi −Xj‖2 = δ2 (for combinatorial changes in the Rips complex) or Yi = cst ∈ End(I)
(for changes in the set of intersection-crossing edges) in (RD)n × Rn. We can then define a finite
measurable partition (D`)`∈L of (RD)n×Rn whose boundaries are included in these hypersurfaces,
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and such that (Xn,Yn) 7→ K is constant over each set D`. As a byproduct, we have that (Xn,Yn) 7→
f is continuous over each set D`.

We now define the operator

Φ2 :

{
C[n] × R̄2n → A

(K, f) 7→ (|K|, fPL)

where A denotes the class of topological spaces filtered by Morse-type functions, and where fPL is
the piecewise-linear interpolation of f on the geometric realization |K| of K. For a fixed simplicial
complex K, the persistence diagrams of f and fPL are identical—see e.g. Morozov (2008), therefore
the map Φ2 is distance-preserving (hence continuous) in the pseudometrics d∆ on the domain and
codomain. Since the topology T2 on C[n]× R̄2n is a refinement1 of the topology induced by d∆, the

map Φ2 is also continuous when C[n] × R̄2n is equipped with T2.
Let now Φ3 : A → R map each Morse-type pair (X , f) to its Mapper (Mr,g(X , f), fI). Note

that, similarly to Φ1, the map Φ3 is piecewise-constant, since combinatorial changes in Mr,g(X , f)
are located at the regions Crit(f) ∩ End(I) 6= ∅, and since fI depends only on the combinatorial
structure of Mr,g(X , f). Hence, Φ3 is measurable in the pseudometric d∆. Moreover, Mr,g(|K|, fPL)
is isomorphic to Mr,g,δ(Xn,Yn) by Theorem A.2 since all intersection-crossing edges were removed
in the construction of K. Hence, the map Φ defined by Φ = Φ3 ◦Φ2 ◦Φ1 is a measurable map that
sends (Xn,Yn) to Mr,g,δ(Xn,Yn).

A.5 Proof of Proposition 3.2

We fix some parameters a > 0 and b ≥ 1. First note that Assumption (2) is always satisfied
by definition of rn. Next, there exists n0 ∈ N such that for any n ≥ n0, Assumption (1) is
satisfied because δn → 0 and ω(δn) → 0 as n → +∞. Moreover, n0 can be taken the same for all
f ∈ ⋃P∈P(a,b)F(P, ω).

Let εn := dH(X ,Xn). Under the (a, b)-standard assumption, it is well known that (see for
instance Cuevas and Rodŕıguez-Casal (2004); Chazal et al. (2015b)):

P (εn ≥ u) ≤ min

{
1,

4b

aub
e−a(

u
2 )
b
n

}
,∀u > 0. (15)

In particular, regarding the complementary of (3) we have:

P

(
εn >

δn
4

)
≤ min

{
1,

2b

2log(n)n

}
. (16)

Recall that diam(XP) ≤ L. Let C̄ = ω(L) be a constant that only depends on the parameters of
the model. Then, for any P ∈ P(a, b), we have:

sup
f∈F(P,ω)

d∆ (Rf (XP),Mn) ≤ C̄. (17)

For n ≥ n0, we have :

sup
f∈F(P,ω)

d∆ (Rf (XP),Mn) = sup
f∈F(P,ω)

d∆ (Rf (XP),Mn) Iεn>δn/4 + sup
f∈F(P,ω)

d∆ (Rf (XP),Mn) Iεn≤δn/4

1This is because singletons are open balls in the discrete topology, and also because of the stability theorem for
persistence diagrams Chazal et al. (2016a); Cohen-Steiner et al. (2007).
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and thus

E

[
sup

f∈F(P,ω)
d∆ (Rf (XP),Mn)

]
≤ C̄P

(
εn >

δn
4

)
+ sup
f∈F(P,ω)

[rn
2

+ 2ω(δn)
]

≤ C̄ min

{
1,

2b

2log(n)n

}
+

(
1 + 4g

2g

)
ω(δn) (18)

where we have used (17), Theorem 2.7 and the fact that Vn(δn) ≤ ω(δn). For n large enough, the
first term in (18) is of the order of δbn, which can be upper bounded by δn and thus by ω(δn) (up
to a constant) since ω(δ)/δ is non-increasing. Since 1+4g

2g < 9
2 because 1

3 < g < 1
2 , we get that the

risk is bounded by ω(δn) for n ≥ n0 up to a constant that only depends on the parameters of the
model. The same inequality is of course valid for any n by taking a larger constant, because n0

itself only depends on the parameters of the model.

A.6 Proof of Proposition 3.3

The proof follows closely Section B.2 of Chazal et al. (2013). Let X0 = [0, a−1/b] ⊂ RD. Obviously,
X0 is a compact submanifold of RD. Let U(X0) be the uniform measure on X0. Let Pa,b,X0

denote the set of (a, b)-standard measures whose support is included in X0. Let x0 = 0 ∈ X0 and
{xn}n∈N∗ ∈ XN

0 such that ‖xn − x0‖ = (an)−1/b. Now, let

f0 :

{
X0 → R
x 7→ ω(‖x− x0‖) .

By definition, we have f0 ∈ F(U(X0), ω) because Dg(X0, f0) = {(0, ω(a−1/b))} since f0 is increasing
by definition of ω, and thus emin(X0, f0) = pmin(X0, f0) = +∞. Finally, given any measure P ∈
Pa,b,X0 , we let θ0(P) := Rf0|XP

(XP). Then, we have:

sup
P∈Pa,b

E

[
sup

f∈F(P,ω)
d∆

(
Rf (XP), R̂n

)]

≥ sup
P∈Pa,b,X0

E

[
sup

f∈F(P,ω)
d∆

(
Rf (XP), R̂n

)]
≥ sup

P∈Pa,b,X0
E
[
d∆

(
Rf0|XP

(XP), R̂n

)]
= sup

P∈Pa,b,X0
E
[
ρ
(
θ0(P), R̂n

)]
,

where ρ := d∆. For any n ∈ N∗, we let P0,n := δx0 be the Dirac measure on x0 and P1,n :=
(1 − 1

n)P0,n + 1
nU([x0, xn]). As a Dirac measure, P0,n is obviously in Pa,b,X0 . We now check that

P1,n ∈ Pa,b,X0 .

• Let us study P1,n(B(x0, r)).

Assume r ≤ (an)−1/b. Then

P1,n(B(x0, r)) = 1− 1

n
+

1

n

r

(an)−1/b
≥
(

1− 1

n
+

1

n

)(
r

(an)−1/b

)b
≥
(

1

2
+

1

n

)
anrb ≥ arb.

Assume r > (an)−1/b. Then
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P1,n(B(x0, r)) = 1 ≥ min{arb}.

• Let us study P1,n(B(xn, r)). Assume r ≤ (an)−1/b. Then

P1,n(B(xn, r)) =
1

n

r

(an)−1/b
≥ 1

n

(
r

(an)−1/b

)b
= arb.

Assume r > (an)−1/b. Then

P1,n(B(xn, r)) = 1 ≥ min{arb}.

• Let us study P1,n(B(x, r)), where x ∈ (x0, xn). Assume r ≤ x. Then

P1,n(B(x, r)) ≥ 1

n

r

(ab)−1/b
≥ arb (see previous case).

Assume r > x. Then P1,n(B(x, r)) = 1− 1
n+ 1

n
(x+min{r, (an)−1/b−x})

(an)−1/b . If min{r, (an)−1/b−x} =

r, then we have

P1,n(B(x, r)) ≥ 1− 1

n
+

1

n

r

(ab)−1/b
≥ arb (see previous case).

Otherwise, we have
P1,n(B(x, r)) = 1 ≥ min{arb}.

Thus P1,n is in Pa,b,X0 as well. Hence, we apply Le Cam’s Lemma (see Section B) to get:

sup
P∈Pa,b,X0

E
[
ρ
(
θ0(P), R̂n

)]
≥ 1

8
ρ(θ0(P0,n), θ0(P1,n)) [1− TV(P0,n,P1,n)]2n .

By definition, we have:

ρ(θ0(P0,n), θ0(P1,n)) = d∆

(
Rf0|{x0}

({x0}),Rf0|[x0,xn]
(U [x0, xn])

)
.

Since Dg
(

Rf0|{x0}
({x0})

)
= {(0, 0)} and Dg

(
Rf0|[x0,xn]

(U [x0, xn])
)

= {(f(x0), f(xn))} because f0

is increasing by definition of ω, it follows that

ρ(θ0(P0,n), θ0(P1,n)) =
1

2
|f(xn)− f(x0)| = 1

2
ω
(

(an)−1/b
)
.

It remains to compute TV(P0,n,P1,n) =
∣∣1− (1− 1

n

)∣∣ + 1
n(an)−1/b = 1

n + o
(

1
n

)
. The Proposition

follows then from the fact that [1− TV(P0,n,P1,n)]2n → e−2.
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A.7 Proof of Proposition 3.4

Let P ∈ Pa,b and ω a modulus of continuity of f . Using the same notation as in the previous
section, we have

P (δn ≥ u) ≤ P
(
dH(Xn,XP) ≥ u

2

)
+ P

(
dH(Xsnn ,XP) ≥ u

2

)
≤ P

(
εn ≥

u

2

)
+ P

(
εsn ≥

u

2

)
. (19)

Note that for any f ∈ F(P, ω), according to (4) and (17)

d∆ (Rf (XP),Mn) ≤
[r

2
+ 2ω(δ)

]
IΩn + C̄ IΩcn (20)

where Ωn is the event defined by

Ωn = {4δn ≤ min{κ, ρ}} ∩ {2ω(δn) ≤ e} ∩ {4εn ≤ δn}.

This gives

E

[
sup

f∈F(P,ω)
d∆ (Mn,Rf (X ))

]
≤
∫ C̄

0
P

(
ω(δn) ≥ 2g

1 + 4g
α

)
dα︸ ︷︷ ︸

(A)

+ C̄P

(
εn ≥

δn
4

)
︸ ︷︷ ︸

(B)

+ C̄P

(
ω(δn) ≥ 1

2
e

)
︸ ︷︷ ︸

(C)

+ C̄P
(
δn ≥ min

{κ
4
,
ρ

4

})
︸ ︷︷ ︸

(D)

.

Let us bound the four terms (A), (B), (C) and (D).

• Terms (C) and (D). Both terms can be bounded using (19) then (15). Indeed, since ω is
increasing, one has for all u > 0:

P (ω(δn) ≥ u) = P
(
δn ≥ ω−1(u)

)
. (21)

• Term (B). Let tn = 2
(

2log(n)
an

)1/b
and An = {εn < tn}. It is known that on the event An,

one has δn ≥ 4εn for n large enough (see for instance Section 6 in Fasy et al. (2014)). Thus,
one has:

P

(
εn ≥

δn
4

)
≤ P

(
εn ≥

δn
4
| An

)
︸ ︷︷ ︸

=0

P (An) + P (Acn) = P (Acn) .

Finally, the probability of Acn is bounded with (15):

P (Acn) ≤ 2b

2log(n)n
.
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• Term (A). This is the dominating term. Using (19) and (21), we have:

(A) ≤
∫ C̄

0
P

(
εn ≥

1

2
ω−1

(
2gα

1 + 4g

))
dα+

∫ C̄

0
P

(
εsn ≥

1

2
ω−1

(
2gα

1 + 4g

))
dα.

We only bound the first integral, but the analysis extends verbatim to the second integral
when replacing n by sn. Let

αn =
1 + 4g

2g
ω

[(
4blog(n)

an

)1/b
]
.

Since x 7→ ω(x)
x is non-increasing, it follows that x 7→ ω−1(x)

x is non-decreasing, and

ω−1(x) ≥ x

y
ω−1(y), ∀x ≥ y > 0. (22)

Using (15), we have the following inequalities:∫ C̄

0
P

(
εn ≥

1

2
ω−1

(
2gα

1 + 4g

))
dα ≤ αn +

8b

a

∫ C̄

αn

1

ω−1
(

2gα
1+4g

)b exp

[
−an

4b
ω−1

(
2gα

1 + 4g

)b]
dα

≤ αn +
8b

a

∫ C̄

αn

αbn[
αω−1

(
2gαn
1+4g

)]b exp

[
− anαb

(4αn)b
ω−1

(
2gαn

1 + 4g

)b]
dα

≤ αn + αn
2b4n1−1/b

ba1/bω−1
(

2gαn
1+4g

) ∫
u≥an

4b
ω−1

(
2gαn
1+4g

)b u1/b−2e−udu

= αn + αn
2bn

blog(n)1/b

∫
u≥log(n)

u1/b−2e−udu

≤ C(a, b)αn,

where we used (22) with x = 2gα
1+4g and y = 2gαn

1+4g for the second inequality. The constant
C(a, b) only depends on a and b.

Hence, since 1+4g
2g < 9

2 , there exist constants K,K ′ > 0 that depend only of the geometric
parameters of the model such that:

(A) ≤ Kω
(
K ′log(sn)

sn

)1/b

.

Final bound. Since sn = nlog(n)−(1+β), by gathering all four terms, there exist constants
C,C ′ > 0 such that:

E

[
sup

f∈F(P,ω)
d∆ (Rf (XP),Mn)

]
≤ Cω

(
C ′log(n)2+β

n

)1/b

.
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A.8 Proof of Proposition 4.1

We have the following bound by using (20) in the proof of Proposition 3.4:

P (d∆(,Rf (XP),Mn) ≥ η)

≤ P
(
ω(δn) ≥ 2g

1 + 4g
η

)
+ P

(
εn ≥

δn
4

)
+ P

(
ω(δn) ≥ 1

2
e

)
+ P

(
δn ≥ min

{κ
4
,
ρ

4

})
≤ P

(
εn ≥

1

2
ω−1

(
2g

1 + 4g
η

))
+ P

(
εsn ≥

1

2
ω−1

(
2g

1 + 4g
η

))
+ o

(
1

nlog(n)

)
.

Following the lines of Section 6 in Fasy et al. (2014), subsampling approximations give

P

(
εn ≥

1

2
ω−1

(
2g

1 + 4g
η

))
≤ Ln

(
1

4
ω−1

(
2g

1 + 4g
η

))
+ o

(sn
n

)1/4
,

and

P

(
εsn ≥

1

2
ω−1

(
2g

1 + 4g
η

))
≤ Fn

(
1

4
ω−1

(
2g

1 + 4g
η

))
+ o

(
s2
n

sn

)1/4

.

The result follows by taking sn = nlog(n)−(1+β).

B Le Cam’s Lemma

The version of Le Cam’s Lemma given below is from Yu (1997) (see also Genovese et al., 2012b).
Recall that the total variation distance between two distributions P0 and P1 on a measured space
(X ,B) is defined by

TV(P0,P1) = sup
B∈B
|P0(B)− P1(B)|.

Moreover, if P0 and P1 have densities p0 and p1 for the same measure λ on X , then

TV(P0,P1) =
1

2
`1(p0, p1) :=

∫
X
|p0 − p1|dλ.

Lemma B.1. Let P be a set of distributions. For P ∈ P, let θ(P) take values in a pseudometric
space (X, ρ). Let P0 and P1 in P be any pair of distributions. Let X1, . . . , Xn be drawn i.i.d. from
some P ∈ P. Let θ̂ = θ̂(X1, . . . , Xn) be any estimator of θ(P), then

sup
P∈P

EPn
[
ρ(θ, θ̂)

]
≥ 1

8
ρ (θ(P0), θ(P1)) [1− TV(P0,P1)]2n .

C Extended Persistence

Let f be a real-valued function on a topological space X. The family {X(−∞,α]}α∈R of sublevel
sets of f defines a filtration, that is, it is nested w.r.t. inclusion: X(−∞,α] ⊆ X(−∞,β] for all
α ≤ β ∈ R. The family {X [α,+∞)}α∈R of superlevel sets of f is also nested but in the opposite
direction: X [α,+∞) ⊇ X [β,+∞) for all α ≤ β ∈ R. We can turn it into a filtration by reversing the
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real line. Specifically, let Rop = {x̃ | x ∈ R}, ordered by x̃ ≤ ỹ ⇔ x ≥ y. We index the family of

superlevel sets by Rop, so now we have a filtration: {X [α̃,+∞)}α̃∈Rop , with X [α̃,+∞) ⊆ X [β̃,+∞) for
all α̃ ≤ β̃ ∈ Rop.

Extended persistence connects the two filtrations at infinity as follows. Replace each superlevel
set X [α̃,+∞) by the pair of spaces (X,X [α̃,+∞)) in the second filtration. This maintains the filtration

property since we have (X,X [α̃,+∞)) ⊆ (X,X [β̃,+∞)) for all α̃ ≤ β̃ ∈ Rop. Then, let RExt =
R ∪ {+∞} ∪ Rop, where the order is completed by α < +∞ < β̃ for all α ∈ R and β̃ ∈ Rop. This
poset is isomorphic to (R,≤). Finally, define the extended filtration of f over RExt by:

Fα = X(−∞,α] for α ∈ R

F+∞ = X ≡ (X, ∅)
Fα̃ = (X,X [α̃,+∞)) for α̃ ∈ Rop,

where we have identified the space X with the pair of spaces (X, ∅). This is a well-defined filtration

since we have X(−∞,α] ⊆ X ≡ (X, ∅) ⊆ (X,X [β̃,+∞)) for all α ∈ R and β̃ ∈ Rop. The subfamily
{Fα}α∈R is called the ordinary part of the filtration, and the subfamily {Fα̃}α̃∈Rop is called the
relative part. See Figure 9 for an illustration.

b0

bh1

bv1

b2

d0

dh1

dv1

d2

Figure 9: The extended filtration of the height function on a torus. The upper row displays the
ordinary part of the filtration while the lower row displays the relative part. The red and blue
cycles both correspond to extended points in dimension 1. The point corresponding to the red
cycle is located above the diagonal (dh1 > bh1), while the point corresponding to the blue cycle is
located below the diagonal (dv1 > bv1).

Applying the homology functor H∗ to this filtration gives the so-called extended persistence

31



module V of f :
Vα = H∗(Fα) = H∗(X

(−∞,α]) for α ∈ R

V+∞ = H∗(F+∞) = H∗(X) ∼= H∗(X, ∅)
Vα̃ = H∗(Fα̃) = H∗(X,X

[α̃,+∞)) for α̃ ∈ Rop,

and where the linear maps between the spaces are induced by the inclusions in the extended
filtration.

For Morse-type functions, the extended persistence module can be decomposed as a finite direct
sum of half-open interval modules—see e.g. Chazal et al. (2016a):

V '
n⊕
k=1

I[bk, dk),

where each summand I[bk, dk) is made of copies of the field of coefficients at each index α ∈ [bk, dk),
and of copies of the zero space elsewhere, the maps between copies of the field being identities. Each
summand represents the lifespan of a homological feature (cc, hole, void, etc.) within the filtration.
More precisely, the birth time bk and death time dk of the feature are given by the endpoints of the
interval. Then, a convenient way to represent the structure of the module is to plot each interval in
the decomposition as a point in the extended plane, whose coordinates are given by the endpoints.
Such a plot is called the extended persistence diagram of f , denoted Dg(f). The distinction between
ordinary and relative parts of the filtration allows to classify the points in Dg(f) in the following
way:

• points whose coordinates both belong to R are called ordinary points; they correspond to
homological features being born and then dying in the ordinary part of the filtration;

• points whose coordinates both belong to Rop are called relative points; they correspond to
homological features being born and then dying in the relative part of the filtration;

• points whose abscissa belongs to R and whose ordinate belongs to Rop are called extended
points; they correspond to homological features being born in the ordinary part and then
dying in the relative part of the filtration.

Note that ordinary points lie strictly above the diagonal ∆ = {(x, x) | x ∈ R} and relative points
lie strictly below ∆, while extended points can be located anywhere, including on ∆, e.g. cc that
lie inside a single critical level. It is common to decompose Dg(f) according to this classification:

Dg(f) = Ord(f) t Rel(f) t Ext+(f) t Ext−(f),

where by convention Ext+(f) includes the extended points located on the diagonal ∆.
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