28,946 research outputs found

    An evaluation of location management procedures

    Get PDF
    This paper gives a comparative description of two scenarios for location management in a mobile telecommunications system. The first scenario uses fixed location and paging areas. Mobiles perform a location update as they enter a new location area. The second scenario uses a time-out based location updating scheme. Mobiles start their timer as they leave the paging area they are currently registered in. As the timer elapses, the mobile performs a location update. Both scenarios also differ in the way paging is performed. In the first scenario it is only necessary to page in the location area the mobile is currently registered in. In order to do this efficiently, the paging is done in a 2-step fashion: mobiles are paged first in the paging area in which they were registered in, and next in the entire location area they are registered in. In the second scenario the mobile is paged in multiple steps: first in the paging area it is registered in, next in a circle of paging areas surrounding that area, and so on, until the mobile is found, or the number of steps has reached a certain upper limit. Results comprise a quantitative and qualitative comparison of these scenarios, and guidelines for optimal applicatio

    Paging and Registration in Cellular Networks: Jointly Optimal Policies and an Iterative Algorithm

    Full text link
    This paper explores optimization of paging and registration policies in cellular networks. Motion is modeled as a discrete-time Markov process, and minimization of the discounted, infinite-horizon average cost is addressed. The structure of jointly optimal paging and registration policies is investigated through the use of dynamic programming for partially observed Markov processes. It is shown that there exist policies with a certain simple form that are jointly optimal, though the dynamic programming approach does not directly provide an efficient method to find the policies. An iterative algorithm for policies with the simple form is proposed and investigated. The algorithm alternates between paging policy optimization and registration policy optimization. It finds a pair of individually optimal policies, but an example is given showing that the policies need not be jointly optimal. Majorization theory and Riesz's rearrangement inequality are used to show that jointly optimal paging and registration policies are given for symmetric or Gaussian random walk models by the nearest-location-first paging policy and distance threshold registration policies.Comment: 13 pages, submitted to IEEE Trans. Information Theor

    Experimental Analysis of Subscribers' Privacy Exposure by LTE Paging

    Full text link
    Over the last years, considerable attention has been given to the privacy of individuals in wireless environments. Although significantly improved over the previous generations of mobile networks, LTE still exposes vulnerabilities that attackers can exploit. This might be the case of paging messages, wake-up notifications that target specific subscribers, and that are broadcasted in clear over the radio interface. If they are not properly implemented, paging messages can expose the identity of subscribers and furthermore provide information about their location. It is therefore important that mobile network operators comply with the recommendations and implement the appropriate mechanisms to mitigate attacks. In this paper, we verify by experiment that paging messages can be captured and decoded by using minimal technical skills and publicly available tools. Moreover, we present a general experimental method to test privacy exposure by LTE paging messages, and we conduct a case study on three different LTE mobile operators

    The K-Server Dual and Loose Competitiveness for Paging

    Full text link
    This paper has two results. The first is based on the surprising observation that the well-known ``least-recently-used'' paging algorithm and the ``balance'' algorithm for weighted caching are linear-programming primal-dual algorithms. This observation leads to a strategy (called ``Greedy-Dual'') that generalizes them both and has an optimal performance guarantee for weighted caching. For the second result, the paper presents empirical studies of paging algorithms, documenting that in practice, on ``typical'' cache sizes and sequences, the performance of paging strategies are much better than their worst-case analyses in the standard model suggest. The paper then presents theoretical results that support and explain this. For example: on any input sequence, with almost all cache sizes, either the performance guarantee of least-recently-used is O(log k) or the fault rate (in an absolute sense) is insignificant. Both of these results are strengthened and generalized in``On-line File Caching'' (1998).Comment: conference version: "On-Line Caching as Cache Size Varies", SODA (1991

    Simple optimality proofs for Least Recently Used in the presence of locality of reference

    Get PDF
    It is well known that competitive analysis yields results that do not reflect the observed performance of online paging algorithms. Many deterministic paging algorithms achieve the same competitive ratio, ranging from inefficient strategies as flush-when-full to the well-performing least-recently-used (LRU). In this paper, we study this fundamental online problem from the viewpoint of stochastic dominance. We give simple proofs that whensequences are drawn from distributions modelling locality of reference, LRU stochastically dominates any other online paging algorithm. As a byproduct, we obtain simple proofs of some earlier results.operations research and management science;
    • …
    corecore