56,935 research outputs found

    On packing spheres into containers (about Kepler's finite sphere packing problem)

    Full text link
    In an Euclidean dd-space, the container problem asks to pack nn equally sized spheres into a minimal dilate of a fixed container. If the container is a smooth convex body and d2d\geq 2 we show that solutions to the container problem can not have a ``simple structure'' for large nn. By this we in particular find that there exist arbitrary small r>0r>0, such that packings in a smooth, 3-dimensional convex body, with a maximum number of spheres of radius rr, are necessarily not hexagonal close packings. This contradicts Kepler's famous statement that the cubic or hexagonal close packing ``will be the tightest possible, so that in no other arrangement more spheres could be packed into the same container''.Comment: 13 pages, 2 figures; v2: major revision, extended result, simplified and clarified proo

    Approximating Smallest Containers for Packing Three-dimensional Convex Objects

    Get PDF
    We investigate the problem of computing a minimal-volume container for the non-overlapping packing of a given set of three-dimensional convex objects. Already the simplest versions of the problem are NP-hard so that we cannot expect to find exact polynomial time algorithms. We give constant ratio approximation algorithms for packing axis-parallel (rectangular) cuboids under translation into an axis-parallel (rectangular) cuboid as container, for cuboids under rigid motions into an axis-parallel cuboid or into an arbitrary convex container, and for packing convex polyhedra under rigid motions into an axis-parallel cuboid or arbitrary convex container. This work gives the first approximability results for the computation of minimal volume containers for the objects described

    Approximating Geometric Knapsack via L-packings

    Full text link
    We study the two-dimensional geometric knapsack problem (2DK) in which we are given a set of n axis-aligned rectangular items, each one with an associated profit, and an axis-aligned square knapsack. The goal is to find a (non-overlapping) packing of a maximum profit subset of items inside the knapsack (without rotating items). The best-known polynomial-time approximation factor for this problem (even just in the cardinality case) is (2 + \epsilon) [Jansen and Zhang, SODA 2004]. In this paper, we break the 2 approximation barrier, achieving a polynomial-time (17/9 + \epsilon) < 1.89 approximation, which improves to (558/325 + \epsilon) < 1.72 in the cardinality case. Essentially all prior work on 2DK approximation packs items inside a constant number of rectangular containers, where items inside each container are packed using a simple greedy strategy. We deviate for the first time from this setting: we show that there exists a large profit solution where items are packed inside a constant number of containers plus one L-shaped region at the boundary of the knapsack which contains items that are high and narrow and items that are wide and thin. As a second major and the main algorithmic contribution of this paper, we present a PTAS for this case. We believe that this will turn out to be useful in future work in geometric packing problems. We also consider the variant of the problem with rotations (2DKR), where items can be rotated by 90 degrees. Also, in this case, the best-known polynomial-time approximation factor (even for the cardinality case) is (2 + \epsilon) [Jansen and Zhang, SODA 2004]. Exploiting part of the machinery developed for 2DK plus a few additional ideas, we obtain a polynomial-time (3/2 + \epsilon)-approximation for 2DKR, which improves to (4/3 + \epsilon) in the cardinality case.Comment: 64pages, full version of FOCS 2017 pape

    Tight-fill fruit packing /

    Get PDF
    C54
    corecore