5 research outputs found

    Stability analysis of impulsive stochastic Cohenā€“Grossberg neural networks with mixed time delays

    Get PDF
    This is the post print version of the article. The official published version can be obtained from the link - Copyright 2008 Elsevier LtdIn this paper, the problem of stability analysis for a class of impulsive stochastic Cohenā€“Grossberg neural networks with mixed delays is considered. The mixed time delays comprise both the time-varying and infinite distributed delays. By employing a combination of the M-matrix theory and stochastic analysis technique, a sufficient condition is obtained to ensure the existence, uniqueness, and exponential p-stability of the equilibrium point for the addressed impulsive stochastic Cohenā€“Grossberg neural network with mixed delays. The proposed method, which does not make use of the Lyapunov functional, is shown to be simple yet effective for analyzing the stability of impulsive or stochastic neural networks with variable and/or distributed delays. We then extend our main results to the case where the parameters contain interval uncertainties. Moreover, the exponential convergence rate index is estimated, which depends on the system parameters. An example is given to show the effectiveness of the obtained results.This work was supported by the Natural Science Foundation of CQ CSTC under grant 2007BB0430, the Scientific Research Fund of Chongqing Municipal Education Commission under Grant KJ070401, an International Joint Project sponsored by the Royal Society of the UK and the National Natural Science Foundation of China, and the Alexander von Humboldt Foundation of Germany

    Stability of Stochastic Reaction-Diffusion Systems with Markovian Switching and Impulsive Perturbations

    Get PDF
    This paper is devoted to investigating mean square stability of a class of stochastic reactiondiffusion systems with Markovian switching and impulsive perturbations. Based on Lyapunov functions and stochastic analysis method, some new criteria are established. Moreover, a class of semilinear stochastic impulsive reaction-diffusion differential equations with Markovian switching is discussed and a numerical example is presented to show the effectiveness of the obtained results

    Stability of stochastic impulsive differential equations: integrating the cyber and the physical of stochastic systems

    Full text link
    According to Newton's second law of motion, we humans describe a dynamical system with a differential equation, which is naturally discretized into a difference equation whenever a computer is used. The differential equation is the physical model in human brains and the difference equation the cyber model in computers for the dynamical system. The physical model refers to the dynamical system itself (particularly, a human-designed system) in the physical world and the cyber model symbolises it in the cyber counterpart. This paper formulates a hybrid model with impulsive differential equations for the dynamical system, which integrates its physical model in real world/human brains and its cyber counterpart in computers. The presented results establish a theoretic foundation for the scientific study of control and communication in the animal/human and the machine (Norbert Wiener) in the era of rise of the machines as well as a systems science for cyber-physical systems (CPS)
    corecore