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This paper is devoted to investigating mean square stability of a class of stochastic reaction-
diffusion systems with Markovian switching and impulsive perturbations. Based on Lyapunov
functions and stochastic analysis method, some new criteria are established. Moreover, a class
of semilinear stochastic impulsive reaction-diffusion differential equations with Markovian
switching is discussed and a numerical example is presented to show the effectiveness of the
obtained results.

1. Introduction

Markovian jump systems, introduced by Krasovskiı̆ and Lidskiı̆ [1] in 1961, have received
increasing attention, see [2–15] and references therein. Shi and Boukas [3] have probed
H∞ control for Markovian jumping linear systems with parametric uncertainty. Zhang et
al. [4–6] have discussed markovian jump linear systems with partly unknown transition
probability. Mao et al. [7–13] have established a number of stability criteria for stochastic
differential equations withMarkovian switching. However, impulsive perturbations have not
been included in the above results.

In fact, impulsive effects widely exist in many fields, such as medicine and biology,
economics, mechanics, electronics, and telecommunications [16–19]. Recently, impulsive
stochastic differential equations have attracted more and more researchers [20–27]. L. Xu and
D. Xu [20] have investigatedmean square exponential stability of impulsive control stochastic
systems with time-varying delay. Li [23] has obtained the attracting set for impulsive
stochastic difference equations with continuous time. Pan and Cao [24] have considered
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exponential stability of impulsive stochastic functional differential equations. Zhang et al.
[25] have studied stability of impulsive stochastic differential equations in terms of two
measures via perturbing Lyapunov functions. Moreover, Markovian Jump Systems with
impulsive perturbations have been investigated [28–31]. Zhang et al. [28] have established
several criteria for stochastic stability analysis of neutral-type impulsive neural networks
with mixed time-varying delays and Markovian jumping. Zhu and Cao [30] have obtained
several sufficient conditions on stability of Markovian jump neural networks with impulse
control and time-varying delays.

Besides impulsive and stochastic effects, reaction diffusion phenomena cannot be
ignored in real systems [32–42]. Kao et al. [34] have discussed exponential stability of
impulsive stochastic fuzzy reaction-diffusion Cohen-Grossberg neural networks with mixed
delays. Wang et al. [40] have probed stochastic exponential stability of the delayed reaction-
diffusion recurrent neural networks with Markovian jumping parameters. However, to
the best of our knowledge, there are few considering the Markovian jump systems with
impulsive perturbations and reaction-diffusion effects.

Motivated by the above discussions, in this paper, we consider mean square stability
of a class of impulsive stochastic reaction-diffusion differential systems with Markovian
switching. In Section 2, model description and preliminaries are presented. In Section 3, by
utilizing Lyapunov function and stochastic analysis, we obtain some new conditions ensuring
mean square stability of impulsive stochastic reaction-diffusion differential equations with
Markovian switching. Moreover, mean square stability of a class of semilinear stochastic
impulsive reaction-diffusion systems has also been discussed. In Section 4, an example is
provided. Section 5 is conclusions.

2. Model Description and Preliminaries

In this section, we investigate the impulsive stochastic reaction diffusion equations with
Markovian switching described by

du(t, x) =
[
D(t, x, u)Δu + f

(
t, x, u, γ(t)

)]
dt

+ σ
(
t, x, u, γ(t)

)
dw(t), t ≥ 0, t /= tk, x ∈ G,

(2.1)

u(tk, x) = Hk

(
u
(
t−k, x

)
, γ(tk)

)
, x ∈ G, (2.2)

with boundary condition

∂u

∂N

∣∣∣∣
∂G

= 0, t ≥ 0 (2.3)

and initial condition

u(0, x, i0) = ϕ(x), x ∈ G, i0 ∈ S, (2.4)

where u(t, x) = (u1(t, x), . . . , un(t, x))
ᵀ, x = (x1, . . . , xm)

ᵀ ∈ G ⊂ Rm,G is a bounded set
with smooth boundary ∂G, ∂/∂N is the outward normal derivative. tk is the impulsive
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moment satisfying 0 = t0 < t1 < t2 < · · · , and limk→∞ tk = +∞, u(t+k, x) and
u(t−

k
, x) denote the right-hand limit and left-hand limit of u(t, x) at tk, respectively.

u(t, x) ∈ PC[[0,+∞) × G,Rn] = {u(t, x) : [0,+∞) × G → Rn | u(t, x) is
continuous for all t ≥ 0 but points tk, u(t+k, x) and u(t−k, x) exist, furthermore, u(t+k, x) =
u(tk, x), k = {1, 2, . . .}. D(t, x, u) is a n × n matrix, Δu = {Δu1, . . . ,Δun}ᵀ,Δui =∑m

l=1(∂
2ui/∂x

2
i ), i = 1, 2, . . . , n. f and σ are continuous, in addition, f(t, x, u, γ(t)) =

{f1(t, x, u, γ(t)), . . . , fn(t, x, u, γ(t))}ᵀ, σ(t, x, u, γ(t)) = {σ1(t, x, u, γ(t)), . . . , σn(t, x, u, γ(t))}ᵀ.
Hk(u(t−k, x), γ(t)) = {H1k(u(t−k, x), γ(t)), . . . ,Hnk(u(t−k, x), γ(t))}ᵀ represents the impulsive
perturbation of u at time tk. w(t) is a one-dimensional standard Brownian motion on a
complete probability space (Ω, F, {Ft}t≥0, P) with a natural filtration {Ft}t≥0. {γ(t), t ≥ 0} is
a left-continuous Markov process on the probability space (Ω, F, (Ft)t∈I , P) and takes values
in the finite space S = {1, 2, . . . , Ñ} with generator Λ = (πij) (i, j ∈ S) given by

P
{
γ(t + Δ) = j | γ(t) = i

}
=

{
πijΔ + o(Δ), if i /= j,

1 + πiiΔ + o(Δ), if i = j,
(2.5)

where Δ > 0 and limδ→ 0 o(Δ)/Δ = 0, πij ≥ 0 is the transition rate from i to j if i /= j and
πii = −∑

j /= i πij . We suppose that the Markov chain γ(·) is independent of the Brownian
motion W(·). Moreover, we assume that Hk(0, γ0) = f(t, x, 0, γ0) = σ(t, x, 0, γ0) = 0, then
system (2.1) admits a trivial solution u = 0. For u(t, x) = (u1(t, x), . . . , un(t, x))

ᵀ ∈ Rn,
we define ‖u(t, x)‖G = (

∫
G |u(t, x)|2dx)1/2 where |u(t, x)|2 =

∑n
i=1 u

2
i (t, x). For simplicity, we

denote ‖u(t, x)‖G by u(t) throughout this paper.
Let u(t, x; 0, ϕ, i0) stand for the solution of system (2.1)–(2.4) through (0, ϕ, i0).

Definition 2.1. The trivial solution u = 0 is said to be mean square stable if for any ε > 0, there
exists δ = δ(ε) such that for all i0 ∈ S, we have

E
{∥∥u

(
t, x; 0, ϕ, i0

)∥∥2
G

}
< ε, t ≥ 0, (2.6)

when ϕ satisfies E{‖ϕ‖2G} ≤ δ.

Definition 2.2. The function V (t, y, γ(t)) : [0,+∞) × R+ × S → R+ belongs to class v1,2
0 if

(1) for k = 1, 2, . . ., the function V is once continuously differentiable in t and twice in
y on (tk−1, tk) × R+ × S, and, in addition, V (t, 0, γ0) = 0 holds for t ≥ 0;

(2) V (t, y, γ(t)) is locally Lipschitzian in y;

(3) for each k = 1, 2, . . ., there exist finite limits

V
(
t, q, γ(t)

) −→ V
(
t−k, y, γ(tk)

)
, if

(
t, q, γ(t)

) −→ (
t−k, y, γ(tk)

)
,

V
(
t, q, γ(t)

) −→ V
(
t+k, y, γ(tk)

)
, if

(
t, q, γ(t)

) −→ (
t+k, y, γ(tk)

)
.

(2.7)
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3. Main Results

In this section, we will discuss mean square stability of the trivial solution of system
(2.1)–(2.4). Assume Hk(u(t−k, x), γ(tk)) satisfies ‖Hk(u(t−k, x), γ(tk))‖

2
G

≤ Γ2
k
‖u(t−

k
, x)‖2

G
, Γk ≥

0, γ(t) = i ∈ S, k = 1, 2, . . . .

Theorem 3.1. If there exist constants α > 0, β > 0, κ > 0 and a Lyapunov function V (t, u(t), i)
such that for γ(t) = i, i ∈ S, we have the following.

(A1) αu(t) ≤ V (t, u(t), i) ≤ κu(t).

(A2) LV (t, u(t), i) ≤ βV (t, u(t), i), t ∈ [tk−1, tk).

Here the operator LV (t, u(t), i) is defined as

LV (t, u(t), i) =
∂V

∂t
+
∂V

∂u

[∫

G

2uᵀD(t, x, u)Δudx +
∫

G

2uᵀf(t, x, u, i)dx
]

+ 2 trace

{(∫

G
uᵀœ(t, x,u, i)dx

)
∂2V

∂u2

(∫

G
uᵀœ(t, x,u, i)dx

)}

+
Ñ∑

j=1

πijV
(
t, x, j

)
.

(3.1)

(A3) λ > 1, where λ = inf{λk | λk = α/κγ2, k = 1, 2, . . .}.
(A4) β(tk − tk−1) < lnλ, k = 1, 2, . . . .

Then, the trivial solution u = 0 of system (2.1)–(2.4) is stable in mean square.

Proof. For any ε > 0, there must exist a scalar δ = δ(ε) > 0 such that δ < (α/κλ)ε. Next we
will prove that E{‖u(t, x; 0, ϕ, i0)‖2G} < ε if ϕ satisfies E{‖ϕ‖2G} ≤ δ.

Let u = u(t, x; 0, ϕ, i0). Multiplying both sides of (2.1) by uᵀ, we obtain

1
2
d|u|2 = [

uᵀD(t, x, u)Δu + uᵀf
(
t, x, u, γ(t)

)]
dt + uᵀσ

(
t, x, u, γ(t)

)
dw(t). (3.2)

By integrating the above equality with respect to x on G, we then have

1
2
d

∫

G

|u|2dx =
[∫

G

uᵀD(t, x, u)Δudx +
∫

G

uᵀf
(
t, x, u, γ(t)

)
dx

]
dt

+
∫

G

uᵀσ
(
t, x, u, γ(t)

)
dx dw(t).

(3.3)

Namely,

du(t) =
[∫

G

2uᵀD(t, x, u)Δudx +
∫

G

uᵀf
(
t, x, u, γ(t)

)
dx

]
dt

+
∫

G

2uᵀσ
(
t, x, u, γ(t)

)
dx dw(t).

(3.4)
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Applying Itô formula, we further compute, when t /= tk,

dV (t, u(t), i) = LV (t, u(t), i) +
∂V

∂u

∫

G

2uᵀσ(t, x, u, i)dx dw(t), (3.5)

where γ(t) = i and

LV (t, u(t), i)

=
∂V (t, u(t), i)

∂t
+
∂V (t, u(t), i)

∂u

[∫

G

2uᵀD(t, x, u)Δudx +
∫

G

2uᵀf(t, x, u, i)dx
]

+ 2 trace

{(∫

G

uᵀσ(t, x, u, i)dx
)
∂2V

∂u2

(∫

G

uᵀσ(t, x, u, i)dx
)}

+
Ñ∑

j=1

πijV
(
t, x, j

)
.

(3.6)

For t ∈ [tk, tk+1), integrating (3.5) with respect to t from tk to t, one has

V
(
t, u(t), γ(t)

)
= V

(
tk, u(tk), γ(tk)

)
+
∫ t

tk

LV
(
s, u(s), γ(s)

)
ds

+
∫ t

tk

∂V

∂u

∫

G

2uᵀσ
(
t, x, u, γ(t)dx dw(t)

)
.

(3.7)

Taking the mathematical expectation of both sides of (3.7), we obtain

EV
(
t, u(t), γ(t)

)
= EV

(
tk, u(tk), γ(tk)

)
+
∫ t

tk

ELV
(
s, u(s), γ(s)

)
ds. (3.8)

Choosing small enough Δt > 0 such that t + Δt ∈ [tk, tk+1), it is easy to see that

EV
(
t + Δt, u(t + Δt), γ(t + Δt)

)
= EV

(
tk, u(tk), γ(tk)

)

+
∫ t+Δt

tk

ELV
(
s, u(s), γ(s)

)
ds.

(3.9)

We thus derive from (3.8) and (3.9) that

EV
(
t + Δt, u(t + Δt), γ(t + Δt)

) − EV
(
t, u(t), γ(t)

)
=

∫ t+Δt

t

ELV
(
s, u(s), γ(s)

)
ds

≤
∫ t+Δt

t

βEV
(
s, u(s), γ(s)

)
ds.

(3.10)
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So

D+EV
(
t, u(t), γ(t)

) ≤ βEV
(
t, u(t), γ(t)

)
. (3.11)

Next, we will first prove

EV
(
t, u(t), γ(t)

) ≤ κλδ, 0 ≤ t < t1. (3.12)

Obviously,

EV
(
0, u(0), γ0

) ≤ Eκu(0) = κE
∥∥ϕ

∥∥2
G ≤ κδ < κλδ. (3.13)

If inequality (3.12) does not hold, there must exist some s ∈ (0, t1) such that

EV
(
s, u(s), γ(s)

)
> κλδ > κδ ≥ EV

(
0, u(0), γ0

)
. (3.14)

Let s1 = inf{s ∈ (0, t1) | EV (s, u(s), γ(s) > κλδ}. Since EV (t, u(t), γ(t)) is continuous on [0, s1],
there exist ŝ ∈ (0, s1) such that

EV
(
ŝ, u(ŝ), γ(ŝ)

)
= κλδ,

EV
(
t, u(t), γ(t)

) ≤ κλδ, t ∈ [0, ŝ),

D+EV
(
ŝ, u(ŝ), γ(ŝ)

)
> 0.

(3.15)

From EV (ŝ, u(ŝ), γ(ŝ)) = κλδ > κδ, if EV (0, u(0), γ0) ≤ κδ, we know that there is s2 ∈ [0, ŝ)
such that

EV
(
s2, u(s2), γ(s2)

)
= κδ,

EV
(
t, u(t), γ(t)

) ≥ κδ, t ∈ [s2, ŝ],

D+EV
(
s2, u(s2), γ(s2)

)
> 0.

(3.16)

On the other hand, noticing D+EV (t, u(t), γ(t)) ≤ βEV (t, u(t), γ(t)), we obtain

D+EV
(
t, u(t), γ(t)

)

EV
(
t, u(t), γ(t)

) ≤ β. (3.17)

Integrating both sides of (3.17) on t ∈ [s2, ŝ] gives

∫ ŝ

s2

D+EV
(
s, u(s), γ(s)

)

EV
(
s, u(s), γ(s)

) ds ≤
∫ ŝ

s2

βds < βt1 < lnλ. (3.18)
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However,

∫ ŝ

s2

D+EV
(
s, u(s), γ(s)

)

EV
(
s, u(s), γ(s)

) ds =
∫EV (ŝ,u(ŝ),γ(ŝ))

EV(s2,u(s2),γ(s2))

dη

η
=
∫κλδ

κδ

dη

η
= ln(κλδ) − ln(κδ) = lnλ,

(3.19)

which is a contradiction. Therefore,

EV
(
t, u(t), γ(t)

) ≤ κλδ, 0 ≤ t < t1. (3.20)

Furthermore,

EV
(
t1, u(t1), γ(t1)

) ≤ Eκu(t1) = κE
∥∥H1(u(t−1 , x))

∥∥2
G ≤ κΓ21E

∥∥u
(
t−1 , x

)∥∥2
Ω

≤ κΓ21
α

EV
(
t1, u

(
t−1 , γ(t1)

)) ≤ κλδ

λ1
≤ κδ.

(3.21)

Now we assume that

EV
(
t, u(t), γ(t)

) ≤ κλδ, tm−1 ≤ t < tm

EV
(
tm, u(tm), γ(tm), γ(tm)

) ≤ κδ
(3.22)

and then prove

EV
(
t, u(t), γ(t)

) ≤ κλδ, tm ≤ t < tm+1,

EV
(
tm + 1, u(tm + 1), γ(tm + 1)

) ≤ κδ.
(3.23)

If not, there must exist some τ ∈ (tm, tm+1) such that

EV
(
τ, u(τ), γ(τ)

)
> κλδ > κδ ≥ EV

(
tm, u(tm), γ(tm), γ(tm)

)
. (3.24)

Let

τ1 = inf
{
τ ∈ (tm, tm+1) | EV

(
τ, u(τ), γ(τ)

)
> κλδ

}
. (3.25)

Since EV (t, u(t), γ(t)) is continuous in [tm, τ1], there exists τ2 ∈ (tm, τ1) satisfying

EV
(
τ2, u(τ2), γ(τ2)

)
= κλδ,

EV
(
t, u(t), γ(t)

) ≤ κλδ, t ∈ [tm, τ2],

D+EV
(
τ2, u(τ2), γ(τ2)

)
> 0.

(3.26)
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Because of EV (τ2, u(τ2), γ(τ2)) = κλδ > κδ and EV (tm, u(tm), γ(tm)) ≤ κε, there is τ3 ∈ [tm, τ2)
such that

EV
(
τ3, u(τ3), γ(τ3)

)
= κδ,

EV
(
t, u(t), γ(t)

) ≤ κδ, t ∈ [τ3, τ2].

D+EV
(
τ3, u(τ3), γ(τ3)

)
> 0.

(3.27)

Noticing D+EV (t, u(t), γ(t)) ≤ βEV (t, u(t), γ(t)), we obtain

D+EV
(
t, u(t), γ(t)

)

EV
(
t, u(t), γ(t)

) ≤ β. (3.28)

Integrating both sides of (3.28) on t ∈ [τ3, τ2], we claim that

∫ τ2

τ3

D+EV
(
s, u(s), γ(s)

)

EV
(
s, u(s), γ(s)

) ds ≤
∫ τ2

τ3

β ds < β(tm+1 − tm) < lnλ. (3.29)

However,

∫ τ2

τ3

D+EV
(
s, u(s), γ(s)

)

EV
(
s, u(s), γ(s)

) ds =
∫EV (τ2,u(τ2),γ(τ2))

EV(τ3,u(τ3),γ(τ3))

dη

η
=
∫κλδ

κδ

dη

η
= ln(κλδ) − ln(κδ) = lnλ.

(3.30)

This leads to a contradiction. Then, we have

EV
(
t, u(t), γ(t)

) ≤ κλδ, tm ≤ t < tm+1. (3.31)

Moreover,

EV
(
tm+1, u(tm+1), γ(tm+1)

) ≤ Eκu(tm+1) = κE
∥∥Hm+1

(
u
(
t−m+1, x

))∥∥2
G
≤ κΓ2m+1E

∥∥u
(
t−m+1, x

)∥∥2
G

≤ κΓ2m+1

α
EV

(
tm+1, u

(
t−m+1

)
, γ(tm+1)

) ≤ κλδ

λm+1
≤ κδ.

(3.32)

Therefore,

EV
(
t, u(t), γ(t)

) ≤ κλδ, t ≥ 0, (3.33)

which results in

αEu(t) ≤ EV
(
t, u(t), γ(t)

) ≤ κλδ, t ≥ 0 (3.34)
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Namely,

E
{∥∥u

(
t, x; 0, ϕ

)∥∥2
G

}
< ε, t ≥ 0. (3.35)

This ends the proof of Theorem 3.1.

As an application, we consider a class of semilinear impulsive stochastic reaction-
diffusion equations with Markovian switching as follows:

du(t, x) =
[
C
(
γ(t)

)
Δu(t, x) +A

(
γ(t)

)
u(t, x)

]
dt

+ σ
(
t, x, u, γ(t)

)
dw(t), t ≥ 0, t /= tk, x ∈ G,

(3.36)

u(tk, x) = Hk

(
u
(
t−k, x

)
, γ(tk)

)
, x ∈ G, (3.37)

with boundary condition

∂u

∂N

∣∣∣∣
∂G

= 0, t ≥ 0 (3.38)

and initial condition

u(0, x, i0) = ϕ(x), x ∈ G, i0 ∈ S (3.39)

where C(γ(t)) = diag{c1(γ(t)), . . . , cn(γ(t))} = diag{ci1, . . . , cin} with cij ≥ 0 for i ∈ S, j =
1, 2, . . . , n.A(γ(t)) = Ai = (alj(γ(t)))n×n = (a(i)

lj )n×n, i ∈ S, is matrices. The remainder of system
(3.36)–(3.39) is the same as that defined in system (2.1)–(2.4).

Theorem 3.2. Assume that

(A5) λ > 1, where λ = inf{λk | λk = 1/Γ2
k
, k = 1, 2, . . .},

(A6) 2maxi{λmax(Ai)}(tk − tk−1) < lnλ, k = 1, 2 . . . , i ∈ S.

Then, the trivial solution u = 0 of system (3.36)–(3.39) is stable in mean square.

Proof. Construct a Lyapunov function V (t, u(t), γ(t)) = u(t), and compute the operator
LV (t, u(t), γ(t)) that

LV
(
t, u(t), γ(t)

)
=
∫

G

2uᵀC
(
γ(t)

)
Δudx +

∫

G

2uᵀA
(
γ(t)

)
u(t, x)dx. (3.40)
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By Green formula, we get

∫

G

2uᵀCiΔudx = 2
∫

G

n∑

j=1

ujcijΔujdx = 2
n∑

j=1

∫

G

ujcijΔujdx

= 2
n∑

j=1

∫

∂Ω
ujcij

∂uj

∂N
ds − 2

n∑

j=1

∫

G

cij∇uj · ∇ujdx.

(3.41)

It follows from boundary condition that

n∑

j=1

∫

∂Ω
ujcij

∂uj

∂N
ds = 0. (3.42)

Thus,

∫

G

2uᵀCiΔudx = −2
n∑

j=1

∫

G

cij∇uj · ∇ujdx ≤ 0. (3.43)

Therefore,

LV
(
t, u(t), γ(t)

) ≤ 2
∫

G

uᵀA
(
γ(t)

)
u(t, x)dx ≤ 2max

i
{λmax(Ai)}u(t). (3.44)

According to Theorem 3.1, we find that the trivial solution of system (3.36)–(3.39) is stable in
mean square.

4. Example

Consider the following two dimension Markovian jumping impulsive stochastic reaction
diffusion systems with two modes. The parameters are given as follows: Let |G| = 1/8, when
r(t) = 1, we have

(
du1(t, x)
du2(t, x)

)
=
(
3.4 0
0 5.5

)(
Δu1(t, x)
Δu2(t, x)

)
+
(
2.6 0
0 1.7

)(
u1(t, x)
u2(t, x)

)

+
(
2u1(t, x)
−u2(t, x)

)
dw(t), t ≥ 0, t /= tk,

(
u1(tk, x)
u2(tk, x)

)
= e−0.1k

(
0.5 −0.2
0.3 0.6

)(
u1
(
t−
k
, x

)

u2
(
t−
k
, x

)
)
,

(4.1)
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when r(t) = 2

(
du1(t, x)
du2(t, x)

)
=
(
2.4 0
0 2.5

)(
Δu1(t, x)
Δu2(t, x)

)
+
(
1.6 0
0 2.7

)(
u1(t, x)
u2(t, x)

)

+
(
2u1(t, x)
−u2(t, x)

)
dw(t), t ≥ 0, t /= tk,

(
u1(tk, x)
u2(tk, x)

)
= e−0.1k

(
0.6 −0.3
0.3 0.4

)(
u1
(
t−
k
, x

)

u2
(
t−
k
, x

)
)
,

(4.2)

where t0 = 0, tk = tk−1 + 0.1, (k = 1, 2, . . .). By simple calculation, we obtain Γk = 0.6e−0.1k, λ =
2.6 > 1, 2λmax(Ai)(tk−tk−1) < lnλ = 0.856. From Theorem 3.2, the trivial solution of this system
is stable in mean square.

5. Conclusion

In this paper, we discuss mean square stability of stochastic reaction diffusion equations
with Markovian switching and impulsive perturbations, by means of Lyapunov function
and stochastic analysis. As an application, we investigate a class of semilinear impulsive
stochastic reaction-diffusion equations with Markovian switching and establish the stability
criterion. Finally, we provide an example to demonstrate the effectiveness and efficiency of
the obtained results.
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