789 research outputs found

    3D Character Modeling in Virtual Reality

    Get PDF
    The paper presents a virtual reality modeling system based on interactive web technologies. The system's goal is to provide a user-friendly virtual environment for the development of 3D characters with an articulated structure. The interface allows the modeling of both the character's joint structure (the hierarchy) and its segment geometry (the skin). The novelty of the system consists of (1) the combination of web technologies used (VRML, Java and EAI) which provides the possibility of online modeling, (2) rules and constraints based operations and thus interface elements, (3) vertices and sets of vertices used as graphics primitives and (4) the possibility to handle and extend hierarchies based on the H-anim structure elements

    Facilitating Learning Online: Modeling the Skills for Reflective Practice

    Get PDF
    This study examined the interactions of facilitators in online reflective practice groups, focusing on the types of strategies used to convey these skills. Learners were found to use the skills modeled by the group facilitator, with the content of the interactions having a greater influence than facilitator style on learnersā€™ use

    Online Modeling and Tuning of Parallel Stream Processing Systems

    Get PDF
    Writing performant computer programs is hard. Code for high performance applications is profiled, tweaked, and re-factored for months specifically for the hardware for which it is to run. Consumer application code doesn\u27t get the benefit of endless massaging that benefits high performance code, even though heterogeneous processor environments are beginning to resemble those in more performance oriented arenas. This thesis offers a path to performant, parallel code (through stream processing) which is tuned online and automatically adapts to the environment it is given. This approach has the potential to reduce the tuning costs associated with high performance code and brings the benefit of performance tuning to consumer applications where otherwise it would be cost prohibitive. This thesis introduces a stream processing library and multiple techniques to enable its online modeling and tuning. Stream processing (also termed data-flow programming) is a compute paradigm that views an application as a set of logical kernels connected via communications links or streams. Stream processing is increasingly used by computational-x and x-informatics fields (e.g., biology, astrophysics) where the focus is on safe and fast parallelization of specific big-data applications. A major advantage of stream processing is that it enables parallelization without necessitating manual end-user management of non-deterministic behavior often characteristic of more traditional parallel processing methods. Many big-data and high performance applications involve high throughput processing, necessitating usage of many parallel compute kernels on several compute cores. Optimizing the orchestration of kernels has been the focus of much theoretical and empirical modeling work. Purely theoretical parallel programming models can fail when the assumptions implicit within the model are mis-matched with reality (i.e., the model is incorrectly applied). Often it is unclear if the assumptions are actually being met, even when verified under controlled conditions. Full empirical optimization solves this problem by extensively searching the range of likely configurations under native operating conditions. This, however, is expensive in both time and energy. For large, massively parallel systems, even deciding which modeling paradigm to use is often prohibitively expensive and unfortunately transient (with workload and hardware). In an ideal world, a parallel run-time will re-optimize an application continuously to match its environment, with little additional overhead. This work presents methods aimed at doing just that through low overhead instrumentation, modeling, and optimization. Online optimization provides a good trade-off between static optimization and online heuristics. To enable online optimization, modeling decisions must be fast and relatively accurate. Online modeling and optimization of a stream processing system first requires the existence of a stream processing framework that is amenable to the intended type of dynamic manipulation. To fill this void, we developed the RaftLib C++ template library, which enables usage of the stream processing paradigm for C++ applications (it is the run-time which is the basis of almost all the work within this dissertation). An application topology is specified by the user, however almost everything else is optimizable by the run-time. RaftLib takes advantage of the knowledge gained during the design of several prior streaming languages (notably Auto-Pipe). The resultant framework enables online migration of tasks, auto-parallelization, online buffer-reallocation, and other useful dynamic behaviors that were not available in many previous stream processing systems. Several benchmark applications have been designed to assess the performance gains through our approaches and compare performance to other leading stream processing frameworks. Information is essential to any modeling task, to that end a low-overhead instrumentation framework has been developed which is both dynamic and adaptive. Discovering a fast and relatively optimal configuration for a stream processing application often necessitates solving for buffer sizes within a finite capacity queueing network. We show that a generalized gain/loss network flow model can bootstrap the process under certain conditions. Any modeling effort, requires that a model be selected; often a highly manual task, involving many expensive operations. This dissertation demonstrates that machine learning methods (such as a support vector machine) can successfully select models at run-time for a streaming application. The full set of approaches are incorporated into the open source RaftLib framework

    Online Modeling and Monitoring of Dependent Processes under Resource Constraints

    Full text link
    Adaptive monitoring of a large population of dynamic processes is critical for the timely detection of abnormal events under limited resources in many healthcare and engineering systems. Examples include the risk-based disease screening and condition-based process monitoring. However, existing adaptive monitoring models either ignore the dependency among processes or overlook the uncertainty in process modeling. To design an optimal monitoring strategy that accurately monitors the processes with poor health conditions and actively collects information for uncertainty reduction, a novel online collaborative learning method is proposed in this study. The proposed method designs a collaborative learning-based upper confidence bound (CL-UCB) algorithm to optimally balance the exploitation and exploration of dependent processes under limited resources. Efficiency of the proposed method is demonstrated through theoretical analysis, simulation studies and an empirical study of adaptive cognitive monitoring in Alzheimer's disease

    Characterization of anomalous Zeeman patterns in complex atomic spectra

    Full text link
    The modeling of complex atomic spectra is a difficult task, due to the huge number of levels and lines involved. In the presence of a magnetic field, the computation becomes even more difficult. The anomalous Zeeman pattern is a superposition of many absorption or emission profiles with different Zeeman relative strengths, shifts, widths, asymmetries and sharpnesses. We propose a statistical approach to study the effect of a magnetic field on the broadening of spectral lines and transition arrays in atomic spectra. In this model, the sigma and pi profiles are described using the moments of the Zeeman components, which depend on quantum numbers and Land\'{e} factors. A graphical calculation of these moments, together with a statistical modeling of Zeeman profiles as expansions in terms of Hermite polynomials are presented. It is shown that the procedure is more efficient, in terms of convergence and validity range, than the Taylor-series expansion in powers of the magnetic field which was suggested in the past. Finally, a simple approximate method to estimate the contribution of a magnetic field to the width of transition arrays is proposed. It relies on our recently published recursive technique for the numbering of LS-terms of an arbitrary configuration.Comment: submitted to Physical Review

    Relative Entropy (RE) Based LTI System Modeling Equipped with time delay Estimation and Online Modeling

    Full text link
    This paper proposes an impulse response modeling in presence of input and noisy output of a linear time-invariant (LTI) system. The approach utilizes Relative Entropy (RE) to choose the optimum impulse response estimate, optimum time delay and optimum impulse response length. The desired RE is the Kulback-Lielber divergence of the estimated distribution from its unknown true distribution. A unique probabilistic validation approach estimates the desired relative entropy and minimizes this criterion to provide the impulse response estimate. Classical methods have approached this system modeling problem from two separate angles for the time delay estimation and for the order selection. Time delay methods focus on time delay estimate minimizing various proposed criteria, while the existing order selection approaches choose the optimum impulse response length based on their proposed criteria. The strength of the proposed RE based method is in using the RE based criterion to estimate both the time delay and impulse response length simultaneously. In addition, estimation of the noise variance, when the Signal to Noise Ratio (SNR) is unknown is also concurrent and is based on optimizing the same RE based criterion. The RE based approach is also extended for online impulse response estimations. The online method reduces the model estimation computational complexity upon the arrival of a new sample. The introduced efficient stopping criteria for this online approaches is extremely valuable in practical applications. Simulation results illustrate precision and efficiency of the proposed method compared to the conventional time delay or order selection approaches.Comment: 13 pages, 11 figure
    • ā€¦
    corecore