110,495 research outputs found

    Quantifying Homology Classes

    Get PDF
    We develop a method for measuring homology classes. This involves three problems. First, we define the size of a homology class, using ideas from relative homology. Second, we define an optimal basis of a homology group to be the basis whose elements' size have the minimal sum. We provide a greedy algorithm to compute the optimal basis and measure classes in it. The algorithm runs in O(β4n3log2n)O(\beta^4 n^3 \log^2 n) time, where nn is the size of the simplicial complex and β\beta is the Betti number of the homology group. Third, we discuss different ways of localizing homology classes and prove some hardness results

    P?=NP as minimization of degree 4 polynomial, integration or Grassmann number problem, and new graph isomorphism problem approaches

    Full text link
    While the P vs NP problem is mainly approached form the point of view of discrete mathematics, this paper proposes reformulations into the field of abstract algebra, geometry, fourier analysis and of continuous global optimization - which advanced tools might bring new perspectives and approaches for this question. The first one is equivalence of satisfaction of 3-SAT problem with the question of reaching zero of a nonnegative degree 4 multivariate polynomial (sum of squares), what could be tested from the perspective of algebra by using discriminant. It could be also approached as a continuous global optimization problem inside [0,1]n[0,1]^n, for example in physical realizations like adiabatic quantum computers. However, the number of local minima usually grows exponentially. Reducing to degree 2 polynomial plus constraints of being in {0,1}n\{0,1\}^n, we get geometric formulations as the question if plane or sphere intersects with {0,1}n\{0,1\}^n. There will be also presented some non-standard perspectives for the Subset-Sum, like through convergence of a series, or zeroing of 02πicos(φki)dφ\int_0^{2\pi} \prod_i \cos(\varphi k_i) d\varphi fourier-type integral for some natural kik_i. The last discussed approach is using anti-commuting Grassmann numbers θi\theta_i, making (Adiag(θi))n(A \cdot \textrm{diag}(\theta_i))^n nonzero only if AA has a Hamilton cycle. Hence, the P\neNP assumption implies exponential growth of matrix representation of Grassmann numbers. There will be also discussed a looking promising algebraic/geometric approach to the graph isomorphism problem -- tested to successfully distinguish strongly regular graphs with up to 29 vertices.Comment: 19 pages, 8 figure

    Factory of realities: on the emergence of virtual spatiotemporal structures

    Full text link
    The ubiquitous nature of modern Information Retrieval and Virtual World give rise to new realities. To what extent are these "realities" real? Which "physics" should be applied to quantitatively describe them? In this essay I dwell on few examples. The first is Adaptive neural networks, which are not networks and not neural, but still provide service similar to classical ANNs in extended fashion. The second is the emergence of objects looking like Einsteinian spacetime, which describe the behavior of an Internet surfer like geodesic motion. The third is the demonstration of nonclassical and even stronger-than-quantum probabilities in Information Retrieval, their use. Immense operable datasets provide new operationalistic environments, which become to greater and greater extent "realities". In this essay, I consider the overall Information Retrieval process as an objective physical process, representing it according to Melucci metaphor in terms of physical-like experiments. Various semantic environments are treated as analogs of various realities. The readers' attention is drawn to topos approach to physical theories, which provides a natural conceptual and technical framework to cope with the new emerging realities.Comment: 21 p

    Geometric Approach to Digital Quantum Information

    Full text link
    We present geometric methods for uniformly discretizing the continuous N-qubit Hilbert space. When considered as the vertices of a geometrical figure, the resulting states form the equivalent of a Platonic solid. The discretization technique inherently describes a class of pi/2 rotations that connect neighboring states in the set, i.e. that leave the geometrical figures invariant. These rotations are shown to generate the Clifford group, a general group of discrete transformations on N qubits. Discretizing the N-qubit Hilbert space allows us to define its digital quantum information content, and we show that this information content grows as N^2. While we believe the discrete sets are interesting because they allow extra-classical behavior--such as quantum entanglement and quantum parallelism--to be explored while circumventing the continuity of Hilbert space, we also show how they may be a useful tool for problems in traditional quantum computation. We describe in detail the discrete sets for one and two qubits.Comment: Introduction rewritten; 'Sample Application' section added. To appear in J. of Quantum Information Processin

    Coherent sets for nonautonomous dynamical systems

    Full text link
    We describe a mathematical formalism and numerical algorithms for identifying and tracking slowly mixing objects in nonautonomous dynamical systems. In the autonomous setting, such objects are variously known as almost-invariant sets, metastable sets, persistent patterns, or strange eigenmodes, and have proved to be important in a variety of applications. In this current work, we explain how to extend existing autonomous approaches to the nonautonomous setting. We call the new time-dependent slowly mixing objects coherent sets as they represent regions of phase space that disperse very slowly and remain coherent. The new methods are illustrated via detailed examples in both discrete and continuous time

    Algebraic statistical models

    Full text link
    Many statistical models are algebraic in that they are defined in terms of polynomial constraints, or in terms of polynomial or rational parametrizations. The parameter spaces of such models are typically semi-algebraic subsets of the parameter space of a reference model with nice properties, such as for example a regular exponential family. This observation leads to the definition of an `algebraic exponential family'. This new definition provides a unified framework for the study of statistical models with algebraic structure. In this paper we review the ingredients to this definition and illustrate in examples how computational algebraic geometry can be used to solve problems arising in statistical inference in algebraic models
    corecore