3,707,576 research outputs found
On graphs with representation number 3
A graph is word-representable if there exists a word over the
alphabet such that letters and alternate in if and only if
is an edge in . A graph is word-representable if and only if it is
-word-representable for some , that is, if there exists a word containing
copies of each letter that represents the graph. Also, being
-word-representable implies being -word-representable. The minimum
such that a word-representable graph is -word-representable, is called
graph's representation number.
Graphs with representation number 1 are complete graphs, while graphs with
representation number 2 are circle graphs. The only fact known before this
paper on the class of graphs with representation number 3, denoted by
, is that the Petersen graph and triangular prism belong to this
class. In this paper, we show that any prism belongs to , and
that two particular operations of extending graphs preserve the property of
being in . Further, we show that is not included
in a class of -colorable graphs for a constant . To this end, we extend
three known results related to operations on graphs.
We also show that ladder graphs used in the study of prisms are
-word-representable, and thus each ladder graph is a circle graph. Finally,
we discuss -word-representing comparability graphs via consideration of
crown graphs, where we state some problems for further research
Number-Phase Wigner Representation for Efficient Stochastic Simulations
Phase-space representations based on coherent states (P, Q, Wigner) have been
successful in the creation of stochastic differential equations (SDEs) for the
efficient stochastic simulation of high dimensional quantum systems. However
many problems using these techniques remain intractable over long integrations
times. We present a number-phase Wigner representation that can be unraveled
into SDEs. We demonstrate convergence to the correct solution for an anharmonic
oscillator with small dampening for significantly longer than other phase space
representations. This process requires an effective sampling of a non-classical
probability distribution. We describe and demonstrate a method of achieving
this sampling using stochastic weights.Comment: 7 pages, 1 figur
Exact c-number Representation of Non-Markovian Quantum Dissipation
The reduced dynamics of a quantum system interacting with a linear heat bath
finds an exact representation in terms of a stochastic Schr{\"o}dinger
equation. All memory effects of the reservoir are transformed into noise
correlations and mean-field friction. The classical limit of the resulting
stochastic dynamics is shown to be a generalized Langevin equation, and
conventional quantum state diffusion is recovered in the Born--Markov
approximation. The non-Markovian exact dynamics, valid at arbitrary temperature
and damping strength, is exemplified by an application to the dissipative
two-state system.Comment: 4 pages, 2 figures. To be published in Phys. Rev. Let
The temporary nature of number-space interactions
It is commonly accepted that the mental representation and processing of numbers and of space are tightly linked. This is evident from studies that have shown relations between math ability and visuospatial skill. Also, math instruction and education rely strongly on visuospatial tools and strategies. The dominant explanation for these number—space interactions is that the mental representation of numbers takes the form of a mental number line with numbers positioned in ascending order according to our reading habits. A long-standing debate is whether the link between numbers and space can be considered as evidence for a spatial number representation in long-term semantic memory, or whether this spatial frame is a temporary representation that emerges in working memory (WM) during task execution. We summarise our recent work that suggests basic number processing tasks do not operate on a long-term spatial memory representation, but on a representation constructed in serial order WM, where the elements are spatially coded as a function of their ordinal position in the memorised sequence. Implications for a new theoretical framework linking serial order WM and basic number processing are discussed
- …
