4,813 research outputs found

    Improved sampling of the pareto-front in multiobjective genetic optimizations by steady-state evolution: a Pareto converging genetic algorithm

    Get PDF
    Previous work on multiobjective genetic algorithms has been focused on preventing genetic drift and the issue of convergence has been given little attention. In this paper, we present a simple steady-state strategy, Pareto Converging Genetic Algorithm (PCGA), which naturally samples the solution space and ensures population advancement towards the Pareto-front. PCGA eliminates the need for sharing/niching and thus minimizes heuristically chosen parameters and procedures. A systematic approach based on histograms of rank is introduced for assessing convergence to the Pareto-front, which, by definition, is unknown in most real search problems. We argue that there is always a certain inheritance of genetic material belonging to a population, and there is unlikely to be any significant gain beyond some point; a stopping criterion where terminating the computation is suggested. For further encouraging diversity and competition, a nonmigrating island model may optionally be used; this approach is particularly suited to many difficult (real-world) problems, which have a tendency to get stuck at (unknown) local minima. Results on three benchmark problems are presented and compared with those of earlier approaches. PCGA is found to produce diverse sampling of the Pareto-front without niching and with significantly less computational effort

    A novel multi-objective evolutionary algorithm based on space partitioning

    Get PDF
    To design an e ective multi-objective optimization evolutionary algorithms (MOEA), we need to address the following issues: 1) the sensitivity to the shape of true Pareto front (PF) on decomposition-based MOEAs; 2) the loss of diversity due to paying so much attention to the convergence on domination-based MOEAs; 3) the curse of dimensionality for many-objective optimization problems on grid-based MOEAs. This paper proposes an MOEA based on space partitioning (MOEA-SP) to address the above issues. In MOEA-SP, subspaces, partitioned by a k-dimensional tree (kd-tree), are sorted according to a bi-indicator criterion de ned in this paper. Subspace-oriented and Max-Min selection methods are introduced to increase selection pressure and maintain diversity, respectively. Experimental studies show that MOEA-SP outperforms several compared algorithms on a set of benchmarks

    Ergonomic Chair Design by Fusing Qualitative and Quantitative Criteria using Interactive Genetic Algorithms

    Get PDF
    This paper emphasizes the necessity of formally bringing qualitative and quantitative criteria of ergonomic design together, and provides a novel complementary design framework with this aim. Within this framework, different design criteria are viewed as optimization objectives; and design solutions are iteratively improved through the cooperative efforts of computer and user. The framework is rooted in multi-objective optimization, genetic algorithms and interactive user evaluation. Three different algorithms based on the framework are developed, and tested with an ergonomic chair design problem. The parallel and multi-objective approaches show promising results in fitness convergence, design diversity and user satisfaction metrics

    Scalarizing Functions in Bayesian Multiobjective Optimization

    Get PDF
    Scalarizing functions have been widely used to convert a multiobjective optimization problem into a single objective optimization problem. However, their use in solving (computationally) expensive multi- and many-objective optimization problems in Bayesian multiobjective optimization is scarce. Scalarizing functions can play a crucial role on the quality and number of evaluations required when doing the optimization. In this article, we study and review 15 different scalarizing functions in the framework of Bayesian multiobjective optimization and build Gaussian process models (as surrogates, metamodels or emulators) on them. We use expected improvement as infill criterion (or acquisition function) to update the models. In particular, we compare different scalarizing functions and analyze their performance on several benchmark problems with different number of objectives to be optimized. The review and experiments on different functions provide useful insights when using and selecting a scalarizing function when using a Bayesian multiobjective optimization method

    Bicriteria scheduling of a two-machine flowshop with sequence-dependent setup times

    Get PDF
    The official published version of the article can be found at the link below.A two-machine flowshop scheduling problem is addressed to minimize setups and makespan where each job is characterized by a pair of attributes that entail setups on each machine. The setup times are sequence-dependent on both machines. It is shown that these objectives conflict, so the Pareto optimization approach is considered. The scheduling problems considering either of these objectives are NP-hard , so exact optimization techniques are impractical for large-sized problems. We propose two multi-objective metaheurisctics based on genetic algorithms (MOGA) and simulated annealing (MOSA) to find approximations of Pareto-optimal sets. The performances of these approaches are compared with lower bounds for small problems. In larger problems, performance of the proposed algorithms are compared with each other. Experimentations revealed that both algorithms perform very similar on small problems. Moreover, it was observed that MOGA outperforms MOSA in terms of the quality of solutions on larger problems.Partial Funding from EPSRC under grant EP/D050863/1

    Improved dynamical particle swarm optimization method for structural dynamics

    Get PDF
    A methodology to the multiobjective structural design of buildings based on an improved particle swarm optimization algorithm is presented, which has proved to be very efficient and robust in nonlinear problems and when the optimization objectives are in conflict. In particular, the behaviour of the particle swarm optimization (PSO) classical algorithm is improved by dynamically adding autoadaptive mechanisms that enhance the exploration/exploitation trade-off and diversity of the proposed algorithm, avoiding getting trapped in local minima. A novel integrated optimization system was developed, called DI-PSO, to solve this problem which is able to control and even improve the structural behaviour under seismic excitations. In order to demonstrate the effectiveness of the proposed approach, the methodology is tested against some benchmark problems. Then a 3-story-building model is optimized under different objective cases, concluding that the improved multiobjective optimization methodology using DI-PSO is more efficient as compared with those designs obtained using single optimization.Peer ReviewedPostprint (published version
    corecore