26,037 research outputs found

    Divergent modulation of nociception by glutamatergic and GABAergic neuronal subpopulations in the periaqueductal gray

    Get PDF
    The ventrolateral periaqueductal gray (vlPAG) constitutes a major descending pain modulatory system and is a crucial site for opioid-induced analgesia. A number of previous studies have demonstrated that glutamate and GABA play critical opposing roles in nociceptive processing in the vlPAG. It has been suggested that glutamatergic neurotransmission exerts antinociceptive effects, whereas GABAergic neurotransmission exert pronociceptive effects on pain transmission, through descending pathways. The inability to exclusively manipulate subpopulations of neurons in the PAG has prevented direct testing of this hypothesis. Here, we demonstrate the different contributions of genetically defined glutamatergic and GABAergic vlPAG neurons in nociceptive processing by employing cell type-specific chemogenetic approaches in mice. Global chemogenetic manipulation of vlPAG neuronal activity suggests that vlPAG neural circuits exert tonic suppression of nociception, consistent with previous pharmacological and electrophysiological studies. However, selective modulation of GABAergic or glutamatergic neurons demonstrates an inverse regulation of nociceptive behaviors by these cell populations. Selective chemogenetic activation of glutamatergic neurons, or inhibition of GABAergic neurons, in vlPAG suppresses nociception. In contrast, inhibition of glutamatergic neurons, or activation of GABAergic neurons, in vlPAG facilitates nociception. Our findings provide direct experimental support for a model in which excitatory and inhibitory neurons in the PAG bidirectionally modulate nociception

    Influence of shoulder pain on muscle function: implications for the assessment and therapy of shoulder disorders

    Get PDF
    Shoulder pain is often a challenging clinical phenomenon because of the potential mismatch between pathology and the perception of pain. Current evidence clearly emphasizes an incomplete understanding of the nature of shoulder pain. Indeed, the effective diagnosis and treatment of shoulder pain should not only rely upon a detailed knowledge of the peripheral pathologies that may be present in the shoulder, but also on current knowledge of pain neurophysiology. To assess and treat shoulder pain, a comprehensive understanding of the way in which pain is processed is essential. This review reflects modern pain neurophysiology to the shoulder and aims to answer the following questions: why does my shoulder hurt? What is the impact of shoulder pain on muscle function? What are the implications for the clinical examination of the shoulder? And finally, what are the clinical implications for therapy? Despite the increasing amount of research in this area, an in-depth understanding of the bidirectional nociception-motor interaction is still far from being achieved. Many questions remain, especially related to the treatment of nociception-motor interactions

    Linkage between increased nociception and olfaction via a SCN9A haplotype

    Get PDF
    Background and Aims: Mutations reducing the function of Nav1.7 sodium channels entail diminished pain perception and olfactory acuity, suggesting a link between nociception and olfaction at ion channel level. We hypothesized that if such link exists, it should work in both directions and gain-of-function Nav1.7 mutations known to be associated with increased pain perception should also increase olfactory acuity. Methods: SCN9A variants were assessed known to enhance pain perception and found more frequently in the average population. Specifically, carriers of SCN9A variants rs41268673C>A (P610T; n = 14) or rs6746030C>T (R1150W; n = 21) were compared with non-carriers (n = 40). Olfactory function was quantified by assessing odor threshold, odor discrimination and odor identification using an established olfactory test. Nociception was assessed by measuring pain thresholds to experimental nociceptive stimuli (punctate and blunt mechanical pressure, heat and electrical stimuli). Results: The number of carried alleles of the non-mutated SCN9A haplotype rs41268673C/rs6746030C was significantly associated with the comparatively highest olfactory threshold (0 alleles: threshold at phenylethylethanol dilution step 12 of 16 (n = 1), 1 allele: 10.6±2.6 (n = 34), 2 alleles: 9.5±2.1 (n = 40)). The same SCN9A haplotype determined the pain threshold to blunt pressure stimuli (0 alleles: 21.1 N/m2, 1 allele: 29.8±10.4 N/m2, 2 alleles: 33.5±10.2 N/m2). Conclusions: The findings established a working link between nociception and olfaction via Nav1.7 in the gain-of-function direction. Hence, together with the known reduced olfaction and pain in loss-of-function mutations, a bidirectional genetic functional association between nociception and olfaction exists at Nav1.7 level

    Pain detection with bioimpedance methodology from 3-dimensional exploration of nociception in a postoperative observational trial

    Get PDF
    Although the measurement of dielectric properties of the skin is a long-known tool for assessing the changes caused by nociception, the frequency modulated response has not been considered yet. However, for a rigorous characterization of the biological tissue during noxious stimulation, the bioimpedance needs to be analyzed over time as well as over frequency. The 3-dimensional analysis of nociception, including bioimpedance, time, and frequency changes, is provided by ANSPEC-PRO device. The objective of this observational trial is the validation of the new pain monitor, named as ANSPEC-PRO. After ethics committee approval and informed consent, 26 patients were monitored during the postoperative recovery period: 13 patients with the in-house developed prototype ANSPEC-PRO and 13 with the commercial device MEDSTORM. At every 7 min, the pain intensity was measured using the index of Anspec-pro or Medstorm and the 0-10 numeric rating scale (NRS), pre-surgery for 14 min and post-anesthesia for 140 min. Non-significant differences were reported for specificity-sensitivity analysis between ANSPEC-PRO (AUC = 0.49) and MEDSTORM (AUC = 0.52) measured indexes. A statistically significant positive linear relationship was observed between Anspec-pro index and NRS (r(2) = 0.15, p < 0.01). Hence, we have obtained a validation of the prototype Anspec-pro which performs equally well as the commercial device under similar conditions

    The Influence of Cytokines on Obesity-Associated Pain

    Get PDF

    A novel behavioral fish model of nociception for testing analgesics

    Get PDF
    Pain is a major symptom in many medical conditions, and often interferes significantly with a person's quality of life. Although a priority topic in medical research for many years, there are still few analgesic drugs approved for clinical use. One reason is the lack of appropriate animal models that faithfully represent relevant hallmarks associated with human pain. Here we propose zebrafish (Danio rerio) as a novel short-term behavioral model of nociception, and analyse its sensitivity and robustness. Firstly, we injected two different doses of acetic acid as the noxious stimulus. We studied individual locomotor responses of fish to a threshold level of nociception using two recording systems: a video tracking system and an electric biosensor (the MOBS system). We showed that an injection dose of 10% acetic acid resulted in a change in behavior that could be used to study nociception. Secondly, we validated our behavioral model by investigating the effect of the analgesic morphine. In time-course studies, first we looked at the dose-response relationship of morphine and then tested whether the effect of morphine could be modulated by naloxone, an opioid antagonist. Our results suggest that a change in behavioral responses of zebrafish to acetic acid is a reasonable model to test analgesics. The response scales with stimulus intensity, is attenuated by morphine, and the analgesic effect of morphine is blocked with naloxone. The change in behavior of zebrafish associated with the noxious stimulus can be monitored with an electric biosensor that measures changes in water impedance. © 2011 by the authors; licensee MDPI, Basel, Switzerland

    Comparison of the qCON and qNOX indices for the assessment of unconsciousness level and noxious stimulation response during surgery

    Get PDF
    The objective of this work is to compare the performances of two electroencephalogram based indices for detecting loss of consciousness and loss of response to nociceptive stimulation. Specifically, their behaviour after drug induction and during recovery of consciousness was pointed out. Data was recorded from 140 patients scheduled for general anaesthesia with a combination of propofol and remifentanil. The qCON 2000 monitor (Quantium Medical, Barcelona, Spain) was used to calculate the qCON and qNOX. Loss of response to verbal command and loss of eye-lash reflex were assessed during the transition from awake to anesthetized, defining the state of loss of consciousness. Movement as a response to laryngeal mask (LMA) insertion was interpreted as the response to the nociceptive stimuli. The patients were classified as movers or non-movers. The values of qCON and qNOX were statistically compared. Their fall times and rise times defined at the start and at the end of the surgery were calculated and compared. The results showed that the qCON was able to predict loss of consciousness such as loss of verbal command and eyelash reflex better than qNOX, while the qNOX has a better predictive value for response to noxious stimulation such as LMA insertion. From the analysis of the fall and rise times, it was found that the qNOX fall time (median: 217 s) was significantly longer (p value <0.05) than the qCON fall time (median: 150 s). At the end of the surgery, the qNOX started to increase in median at 45 s before the first annotation related to response to stimuli or recovery of consciousness, while the qCON at 88 s after the first annotation related to response to stimuli or recovery of consciousness (p value <0.05). The indices qCON and qNOX showed different performances in the detection of loss of consciousness and loss of response to stimuli during induction and recovery of consciousness. Furthermore, the qCON showed faster decrease during induction. This behaviour is associated with the hypothesis that the loss of response to stimuli (analgesic effect) might be reached after the loss of consciousness (hypnotic effect). On the contrary, the qNOX showed a faster increase at the end of the surgery, associated with the hypothesis that a higher probability of response to stimuli might be reached before the recovery of consciousness.Postprint (author's final draft
    • …
    corecore