172,447 research outputs found
No-reference Image Denoising Quality Assessment
A wide variety of image denoising methods are available now. However, the
performance of a denoising algorithm often depends on individual input noisy
images as well as its parameter setting. In this paper, we present a
no-reference image denoising quality assessment method that can be used to
select for an input noisy image the right denoising algorithm with the optimal
parameter setting. This is a challenging task as no ground truth is available.
This paper presents a data-driven approach to learn to predict image denoising
quality. Our method is based on the observation that while individual existing
quality metrics and denoising models alone cannot robustly rank denoising
results, they often complement each other. We accordingly design denoising
quality features based on these existing metrics and models and then use Random
Forests Regression to aggregate them into a more powerful unified metric. Our
experiments on images with various types and levels of noise show that our
no-reference denoising quality assessment method significantly outperforms the
state-of-the-art quality metrics. This paper also provides a method that
leverages our quality assessment method to automatically tune the parameter
settings of a denoising algorithm for an input noisy image to produce an
optimal denoising result.Comment: 17 pages, 41 figures, accepted by Computer Vision Conference (CVC)
201
No-reference image quality assessment through the von Mises distribution
An innovative way of calculating the von Mises distribution (VMD) of image
entropy is introduced in this paper. The VMD's concentration parameter and some
fitness parameter that will be later defined, have been analyzed in the
experimental part for determining their suitability as a image quality
assessment measure in some particular distortions such as Gaussian blur or
additive Gaussian noise. To achieve such measure, the local R\'{e}nyi entropy
is calculated in four equally spaced orientations and used to determine the
parameters of the von Mises distribution of the image entropy. Considering
contextual images, experimental results after applying this model show that the
best-in-focus noise-free images are associated with the highest values for the
von Mises distribution concentration parameter and the highest approximation of
image data to the von Mises distribution model. Our defined von Misses fitness
parameter experimentally appears also as a suitable no-reference image quality
assessment indicator for no-contextual images.Comment: 29 pages, 11 figure
VIQID: a no-reference bit stream-based visual quality impairment detector
In order to ensure adequate quality towards the end users at all time, video service providers are getting more interested in monitoring their video streams. Objective video quality metrics provide a means of measuring (audio)visual quality in an automated manner. Unfortunately, most of the current existing metrics cannot be used for real-time monitoring due to their dependencies on the original video sequence. In this paper we present a new objective video quality metric which classifies packet loss as visible or invisible based on information extracted solely from the captured encoded H.264/AVC video bit stream. Our results show that the visibility of packet loss can be predicted with a high accuracy, without the need for deep packet inspection. This enables service providers to monitor quality in real-time
Deep Neural Networks for No-Reference and Full-Reference Image Quality Assessment
We present a deep neural network-based approach to image quality assessment
(IQA). The network is trained end-to-end and comprises ten convolutional layers
and five pooling layers for feature extraction, and two fully connected layers
for regression, which makes it significantly deeper than related IQA models.
Unique features of the proposed architecture are that: 1) with slight
adaptations it can be used in a no-reference (NR) as well as in a
full-reference (FR) IQA setting and 2) it allows for joint learning of local
quality and local weights, i.e., relative importance of local quality to the
global quality estimate, in an unified framework. Our approach is purely
data-driven and does not rely on hand-crafted features or other types of prior
domain knowledge about the human visual system or image statistics. We evaluate
the proposed approach on the LIVE, CISQ, and TID2013 databases as well as the
LIVE In the wild image quality challenge database and show superior performance
to state-of-the-art NR and FR IQA methods. Finally, cross-database evaluation
shows a high ability to generalize between different databases, indicating a
high robustness of the learned features
Efficient No-Reference Quality Assessment and Classification Model for Contrast Distorted Images
In this paper, an efficient Minkowski Distance based Metric (MDM) for
no-reference (NR) quality assessment of contrast distorted images is proposed.
It is shown that higher orders of Minkowski distance and entropy provide
accurate quality prediction for the contrast distorted images. The proposed
metric performs predictions by extracting only three features from the
distorted images followed by a regression analysis. Furthermore, the proposed
features are able to classify type of the contrast distorted images with a high
accuracy. Experimental results on four datasets CSIQ, TID2013, CCID2014, and
SIQAD show that the proposed metric with a very low complexity provides better
quality predictions than the state-of-the-art NR metrics. The MATLAB source
code of the proposed metric is available to public at
http://www.synchromedia.ca/system/files/MDM.zip.Comment: 6 pages, 4 figures, 4 table
- …
