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ABSTRACT
In order to ensure adequate quality towards the end users at
all time, video service providers are getting more interested
in monitoring their video streams. Objective video quality
metrics provide a means of measuring (audio)visual quality
in an automated manner. Unfortunately, most of the current
existing metrics cannot be used for real-time monitoring due
to their dependencies on the original video sequence. In this
paper we present a new objective video quality metric which
classifies packet loss as visible or invisible based on informa-
tion extracted solely from the captured encoded H.264/AVC
video bit stream. Our results show that the visibility of packet
loss can be predicted with a high accuracy, without the need
for deep packet inspection. This enables service providers to
monitor quality in real-time.

Index Terms— Visual Quality, Impairment Detection, No-
Reference, H.264/AVC

1. INTRODUCTION

When video is streamed over IP-based networks, such as the
Internet, packet loss can severely degrade the visual quality
of the received video signal. In order to deliver, ensure and
maintain optimal quality towards the end-users at all time,
video service providers are getting more interested in objec-
tive video quality metrics for continuous real-time monitoring
of their video streams.

Objective video quality metrics can be classified into three
categories depending on the availability of the original video
sequence:

• Full-Reference (FR) quality metrics require access to
the complete original video sequence since their quality
evaluation is usually based on a frame-by-frame com-
parison between the original and the impaired sequence.
Two of the most well known FR video quality metrics
are Peak Signal-to-Noise Ratio and Structural SIMilar-
ity (SSIM) [1].

• Reduced-Reference (RR) metrics measure quality by
comparing certain features which are extracted from

the original and the impaired video sequence. At the
sender side, these features are extracted and signaled to
the receiver using an ancillary error-free channel.

• No-Reference (NR) metrics perform their quality evalu-
ation using only the received (erroneous) video stream.
As these metrics do not depend on the original sequence
nor need an ancillary channel, they are most appropri-
ate for monitoring purposes.

Furthermore, quality metrics can be pixel-based, bit stream-
based or a combination of both. Pixel-based metrics require
a complete decoding of the received video sequence, whereas
bit stream metrics only perform a parsing of the encoded video
stream in order to estimate visual quality. Hybrid quality met-
rics use a combination of pixel information and bit stream
processing. From a real-time monitoring point of view, it
is clear that NR bit stream-based video quality metrics are
the most interesting ones since they do not require access to
the original video sequence nor the decoding of the received
video stream.

Traditionally, quality metrics provide an average quality
rating for the entire video sequence or over a certain time
window. For example, SSIM outputs a score between -1 and
1 where the latter stands for perfect quality. However, when
monitoring video streams it could be preferable to receive in-
stantaneous feedback when visual artifacts occur due to net-
work impairments. This is also interesting in the case of
monitoring long video sequences such as television programs
or movies. By counting the number of visual impairments
or tracking the mean time between visual artifacts, service
providers can gain more insight into the quality of the deliv-
ery network and their video streams.

In this paper we focus on predicting the visibility of net-
work artifacts1, introduced by packet loss in the network, in
H.264/AVC encoded video sequences and introduce ViQID,
a novel bit stream based visual quality impairment detector.
For modeling the visibility of network impairments, we use a
decision tree which classifies packet losses as visible or invis-
ible based on parameters extracted solely from the captured

1no compression artifacts are taken into account.
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encoded video bit stream.
The remainder of this paper is structured as follows. We

start in section 2 by providing an overview of already con-
ducted research concerning the detection of visual quality deg-
radations in video sequences. Next, section 3 describes the
subjective test conducted in order to obtain the ground truth
for constructing our model. In section 4 we propose and eval-
uate different decision trees for predicting packet loss visibil-
ity. Finally, we conclude the article and present future work.

2. BIT STREAM BASED QUALITY IMPAIRMENT
DETECTION

In this section, we provide a general overview of already con-
ducted research related to the visiblity of visual impairments.

Kanumuri et al. used two different modeling approaches
in [2] to determine whether packet loss, occurring in MPEG-2
encoded sequences, results in visible impairments. First, a RR
classifier is constructed which extracts information from the
complete video bit stream, the received bit stream and the de-
coded video. The decision tree classifier was trained on data
obtained through a subjective test where users were asked to
indicate when they saw an artifact. Based on these data, a
packet loss was classified to be visible when 75% or more of
the subjects perceived the error. If 25% or less of the subjects
perceived the artifact, the packet loss was classified as invis-
ible. The remaining errors were classified as indeterminable
and not used as training data.

In a second approach, the authors used a General Linear
Model (GLM) to predict the probability that a packet loss is
visible and used these probabilities to decide whether a packet
loss is visible or not. Using a GLM, thresholds for identifying
visible losses can be set dynamically without the need for re-
constructing the model. This is not the case when a decision
tree is used.

In [3], saliency-based factors were included as additional
parameters during the construction of a GLM for predicting
packet loss visibility. Results indicated that the prediction
performance improved when visual attention was taken into
account.

A GLM was also used in [4] to model the probability that
individual and multiple packet losses result in visible impair-
ments for H.264/AVC encoded video sequences. The pro-
posed model is also a RR model which needs access to the
decoded (lossy) video and to features extracted from the orig-
inal encoded video. Results show that the amount of motion
is not a significant feature for predicting packet loss visibility
when motion-compensated error concealment is used.

Reibman et al. [5] showed that the overall accuracy of es-
timating packet loss visibility can be increased when scene
characteristics such as camera motion and proximity to scene
changes are taken into account. Concerning the influence of
camera motion, results indicate that impairments are less vis-
ible in still scenes compared to panning and zooming scenes.

Suresh et al. introduced the Mean Time Between Fail-
ures (MTBF) [6] as a new means for subjective measurement
of quality instead of using the more traditional Mean Opin-
ion Score (MOS) grading scales [7, 8]. During a subjective
test, users are asked to indicate the occurrence of visual im-
pairments during playback by, for example, pressing a buzzer
or a space bar. The MTBF measure is based on failure statis-
tics and represents how often an average viewer perceives any
kind of visual artifact. It is argued that, amongst other, MTBF
simplifies the subjective test procedure and that it is more ro-
bust in the context of heterogeneous stimuli.

In [9], the Automatic Video Quality (AVQ) metric is de-
scribed which is capable of detecting and quantifying visible
compression and network artifacts. The former are estimated
as a function of the quantization step size and scene activ-
ity whereas the latter are estimated during the decoding pro-
cess. Since the AVQ metric uses information from both the
encoded bit stream and the decoded pixel values, it is a hybrid
no-reference video quality metric. Results in [10] indicate a
high correlation between the objective AVQ scores and the
subjective MTBF measurements.

Still, all research is currently mainly focused on RR and
hybrid video metrics for predicting visual quality. However,
we developed a new model which only needs information that
can be extracted from the encoded bit stream, without the ne-
cessity of decoding.

3. SUBJECTIVE TEST SETUP

In order to obtain the ground truth for constructing and val-
idating our model, a subjective test was conducted using the
Degradation Category Rating (DCR) methodology [8]. This
methodology implies that the test sequences are displayed
pairwise. During the experiment, both the original video se-
quence and the impaired version of it were shown simulta-
neously, one next to the other. Immediately after watching
each pair of sequences, the user was required to rate the visual
degradation between the impaired and the original sequence
using a five-level scale ranging from ’imperceptible’ to ’very
annoying’. At the beginning of the subjective test, three train-
ing sequences were shown to the subjects to indicate the level
of impairments they could expect.

We used four different standard video-only sequences of
CIF resolution (352x288 pixels) which represent different con-
tent types: akiyo, foreman, mobile and stefan. Since we are
focusing on predicting the visibility of network impairments
only, we encoded the sequences at maximal image quality.
Each sequence was encoded at 30 frames per second (fps) us-
ing 0, 2 and 3 consecutive B-pictures between two reference
pictures. B-pictures were not used as reference. Two different
GOP sizes were used: 17 in the case of 3 B-pictures and 16
in the case of 0 and 2 B-pictures. Every picture was encoded
using only one slice.

The sequences were impaired using xStreamer [11], our



in-house developed modular multimedia streamer. Figure 1
depicts the configuration we used for impairing the sequences.
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Fig. 1. RTP packets, which carry data from particular slices,
are dropped using the avc-framedrop-classifier component.
The resulting impaired sequence is saved to a new file after
unpacketizing.

First, the raw H.264/AVC Annex B encoded bit stream is
packetized according to RFC 3984 [12] into RTP packets. No
aggregation is performed during packetization. As such, the
loss of a RTP packet will never affect more than one slice. The
avc-framedrop-classifier drops all RTP packets which carry
data from a certain slice. As a slice is only decoded when it is
received completely error-free, dropping only one RTP packet
or all packets carrying data from the same slice always results
in an undecodable slice. In our case, dropping a slice results
in the loss of an entire picture. Finally, after unpacketizing the
RTP packets, the resulting impaired raw H.264/AVC Annex B
bit stream is saved to a new file.

An adjusted version of the JM reference software version
16.1 was used to decode the impaired sequences as the origi-
nal version fails to process corrupted bit streams in all but the
simplest cases. In the modified version, the decoder skips all
frames before the first IDR frame it encounters. As a result, if
the very first frame of a bitstream is lost, the entire first GOP
will be skipped. Once the first IDR is processed, the decoder
detects missing frames by means of gaps in the picture order
count (POC). To do so, two variables are used: the difference
between the POCs of any two successive frames and the dis-
tance between the POCs of two successive reference frames.
The first value is used to detect when a non reference frame is
lost. When a non reference frame is lost, it is replaced by the
previous frame in the display order. The second value is used
to detect when a reference frame is lost. In such a case, the
reference frame is replaced by the nearest reference frame in
time. Missing IDR frames are detected by checking the POC
of the current frame with the POC with the last decoded or
concealed reference frame. If this POC is lower, then an IDR
frame is missing and needs concealing. In such a case, the
last reference frame of the previous GOP is used.

Each encoded sequence was impaired using 10 times a
single slice drop, 10 times two consecutive slice drops and
10 times three consecutive slice drops. Of these 10 streaming
scenarios, the first dropped slice was randomly selected to
be 4 times a B-slice, 4 times a P-slice and 2 times an I-slice.
Slices were dropped in decoding order. This resulted in a total

number of 312 impaired video sequences which were divided
into 4 datasets of 78 sequences. The datasets were created
to contain an equal number of impaired sequences for each
of the four different content types. 35 subjects participated
with the subjective test of which some of them evaluated more
than one dataset. Each dataset was evaluated by exactly 20
subjects.

4. CONSTRUCTING AND EVALUATING DECISION
TREES FOR VISUAL IMPAIRMENT DETECTION

In order to model the visibility of packet loss, we propose the
use of a decision tree for its ease of understanding, interpreta-
tion and implementation. Furthermore, a decision tree can be
regarded as a white box which enables us to completely un-
derstand the internal structure of the model. As we are target-
ing a real-time no-reference bit stream video quality metric,
we only consider a minimal number of parameters which can
easily be extracted from the encoded bit stream for building
our classification tree. These parameters are listed and ex-
plained in Table 1. Four different content classes (A through
D) were defined, based on the amount of motion in the se-
quence. Content class A corresponds with the sequence con-
taining the lowest amount of motion, akiyo in our case. The
stefan sequence was assigned class D as it contains the high-
est amount of motion. Mobile and foreman were divided into
content classes B and C, respectively. In this article, we do
not consider the problem of content classification. As such,
this classification was performed as a pre-processing step and
signaled inside the bit stream itself. Using methods described
in [13] and [14] it is however possible to derive motion char-
acteristics from the compressed video bit stream.

class Content classification based on the
amount of motion in the sequence

slice type Slice type of the corresponding
dropped slice

impaired pics Number of impaired pictures due to
the loss of a particular slice

cons losses Number of consecutive slice losses
cons b losses Number of consecutive B-slice

losses

Table 1. Parameters considered for building our decision tree.
Only parameters which can be easily extracted from the en-
coded bit stream are taken into account.

We used the Waikato Environment for Knowledge Analy-
sis (WEKA) [15], an open source data mining software pack-
age, for constructing our decision tree. Subjective results
from three out of the four available datasets were used for
training the decision tree and one dataset was used for vali-
dation. In order to evaluate the performance of the classifier,



the overall accuracy and the true positive (TP) rate are mea-
sured. The latter represents the percentage of visible packet
loss that has been correctly classified as being visible and the
percentage of invisible packet loss correctly classified as not
perceivable.

In order to classify packet loss as visible or invisible, we
used the same thresholds set by Kanumuri et al. [2]. As such,
when 75% or more of the subjects gave a quality score of 5 to
a sequence, the impairment was classified as invisible. Like-
wise, packet loss was classified as visible when 25% or less of
the subjects provided a quality rating of 5 to a sequence. The
remaining impairments, in our case about 20% of the entire
training data, were also classified as indeterminable and not
taken into account when building the classifier. It is impor-
tant to mention that by using these two different thresholds,
not every packet loss can be classified as visible or invisible.
The resulting classifier is depicted in Figure 2.

impaired_pics

invisible visible

invisible class

impaired_picsinvisible

visiblecons_losses

<= 2 > 2

A B, C, D

> 9<= 9

> 1= 1

Fig. 2. Classification tree based on the same detection thresh-
olds used in [2].

First, a split is made on the number of impaired pictures.
This parameter corresponds with the visual impairment drift
and can easily be predicted using the slice type of the dropped
slice and the location of the loss within the GOP. In our case,
impaired pics less than or equal to 2 corresponds with 1 or 2
consecutive B-slice drops. As P-slices and I-slices are used as
reference, losing such a slice results in an impaired pics count
larger than 2. Video content does not play a role when losing
up to 2 consecutive B-slices. In the case of losing a P-slice or
an I-slice, a split is further made based on content type. Packet
loss is visible in sequences with medium and high amounts of
motion. Only in the case of very low motion sequences (such
as the akiyo sequence), packet loss visibility depends on the

number of consecutive slice losses and the slice type. Losing
only 1 slice does not result in a visible artifact, even if this
dropped slice is a P-slice or an I-slice. When multiple con-
secutive slices are lost, impairment visibility depends on the
location of the drops within the GOP. Multiple slice drops in
the beginning of the GOP will be detected more rapidly as the
temporal drift of the impairment is longer. Furthermore, when
multiple slices are dropped, more error concealment must be
performed due to the loss of additional reference pictures.

Our classifier has a 10 fold cross-validation accuracy of
93.16%, with TP rates for visible and invisible predictions
of respectively 97.0% and 84.5%. When evaluating our con-
structed tree against the validation set, an overall accuracy of
85.92% is obtained. In this case, TP rates for visible and invis-
ible classifications are 90.6% and 72.2% respectively. These
results are also listed in Table 2 and show that the classifier is
able to reliably predict the occurence of visual impairments.
Furthermore, the overall tree size remains small and requires
only 3 parameters for the classification.

In contrast with the results from [4], the amount of motion
does influence the visibility of packet loss in our sequences.
However, as the tree indicates, packet losses are only masked
in very low motion sequences which then corresponds more
with the results in [5]. The classifiers from [2], [3] and [4]
all use parameters which need to be extracted from the video
exactly at the location of the loss. In our case, packet loss
always results in one or more pictures being dropped which,
in turn, simplifies our classifier. As a result, only information
is used which can be extracted from the captured bit stream
without the need for deep packet processing.

Test set Cross-validation
Accuracy 85.92% 93.16%
TP visible 90.6% 97.0%
TP invisible 72.2% 84.5%

Table 2. Performance statistics of the decision tree when the
subjective data is processed according to the visiblity thresh-
olds from [2].

In this paper, we are also interested in constructing a de-
cision tree capable of classifying each occurring packet loss
as visible or invisible and thus avoiding classifying packet
loss as indeterminable. Therefore, we classified packet loss
as visible when 65% or more of the subjects rated the corre-
sponding sequence less than 5, otherwise it was classified as
invisible. This threshold is lower compared to the one used
in [2] because we want to build a more stringent decision tree
and avoid classifying packet loss as indeterminable. Further-
more, as we showed the original and the impaired video se-
quence pairwise during the subjective test, the influence of
packet loss on visual quality is more rapidly perceived. Us-
ing this new threshold, the classifier depicted in Figure 3 was
constructed. Performance statistics of this decision tree are



summarized in Table 3.
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Fig. 3. Decision tree for predicting the visibility of slice drops
due to packet loss.

This classifier makes a first decision based on the num-
ber of consecutive slice losses. When only one slice is lost,
the type of that missing slice in combination with sequence
content determines the visibility of the packet loss. As such,
only the loss of a single P-slice or I-slice will result in a vis-
ible artifact in sequences with medium and high amounts of
motion; losing a single B-slice never results in a visible im-
pairment. In the case of multiple consecutive slice losses, a
split is further made using the number of consecutive B-slice
losses. Packet loss will be visible when multiple consecutive
slices of reference pictures are lost. Visual artifacts will also
be perceived when more than 2 consecutive B-slices are lost.
Video content does not influence impairment visibility when
losing multiple consecutive slices.

In contrast with the tree from Figure 2, the number of con-
secutive impaired pictures is not used during the classification
process. Hence, only parameters which can be extracted dur-
ing bit stream monitoring are taken into account.

Test set Cross-validation
Accuracy 85.90% 85.04%
TP visible 91.5% 94.6%
TP invisible 68.4% 61.8%

Table 3. Accuracy and TP rates for our classifier, based on a
detection threshold of 65%. Performance was evaluated using
a test set and 10 fold cross-validation.

An overall accuracy of 85% is obtained when validating
the resulting tree using both the test set and 10 fold cross-
validation. Based on the TP rates, the tree performs slightly
better in correctly classifying packet loss. During real-time
monitoring of visual quality, it is important not to misclassify

packet loss as being invisible to often. In that sense, it is
better to signal visible impairments optimistically rather than
not detecting visual artifacts at all. Concerning the tree size,
11 nodes and 4 parameters are used to classify packet loss
visibility.

Our two constructed decision trees classify packet loss
visibility with a high accuracy. All parameters used in the
decision process can be extracted while monitoring the video
streams without the need for decoding or deep packet pars-
ing. Furthermore, due to the reduced number of parameters
and overall tree size, the classifiers can be used for detecting
visual impairments in real-time.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a novel bit stream-based NR video
quality metric which can be used for real-time video quality
impairment detection. This enables service providers to mon-
itor their video streams. Using data obtained from a subjec-
tive test, different decision tree classifiers were constructed
and evaluated for classifying packet loss as visible or invisi-
ble.

Performance statistics show that our two classifiers obtain
a high accuracy for classifying packet loss as visible or invisi-
ble. Furthermore, our proposed trees are small in size and use
only a limited number of parameters.

Our classifiers only consider parameters which can easily
be extracted from the encoded bit stream without deep packet
inspection or decoding.

Using a lower detection threshold, packet loss can always
be classified as being visible or invisible. In this case, the
proposed intuitive decision tree performs well in detecting vi-
sual impairments caused by slice losses. Monitoring the re-
ceived video bit stream is sufficient for extracting the param-
eters necessary for classifying packet loss visibility.

Our results also indicate that impairment visibility depends
on sequence content. Static, low motion sequences are less
sensitive to slice drops compared to medium and high motion
sequences.

The work presented in this paper is a first step towards a
full NR bit stream-based video quality metric capable of pre-
dicting the occurence of visual degradations with a high accu-
racy. In future work, we will investigate the influence of dif-
ferent content (ranging from CIF resolution up to High Def-
inition) and different encoding settings (e.g. multiple slices
per picture) on the visibility of packet loss. We are hereby tar-
geting a NR bit stream-based metric which enables real-time
visual quality monitoring of multiple video stream simultane-
ously.
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