36,723 research outputs found

    Thermal modeling of phase change solidification in thermal control devices including natural convection effects

    Get PDF
    Natural convection effects in phase change thermal control devices were studied. A mathematical model was developed to evaluate natural convection effects in a phase change test cell undergoing solidification. Although natural convection effects are minimized in flight spacecraft, all phase change devices are ground tested. The mathematical approach to the problem was to first develop a transient two-dimensional conduction heat transfer model for the solidification of a normal paraffin of finite geometry. Next, a transient two-dimensional model was developed for the solidification of the same paraffin by a combined conduction-natural-convection heat transfer model. Throughout the study, n-hexadecane (n-C16H34) was used as the phase-change material in both the theoretical and the experimental work. The models were based on the transient two-dimensional finite difference solutions of the energy, continuity, and momentum equations

    Shape evolution of electrodeposited bumps into deep cavities

    Get PDF
    Metal posts and finer pitch solder bumps are the indispensable microconnectors for chip size packaging and are formed by electrodeposition into deep cavities. It is difficult to stir inside these deep cavities. Natural convection due to density difference is effective in stirring inside cavity with 200 mum cathode width of aspect ratio of one. The bump shape increases toward lower side in a vertical cathode arrangement with placement angle of Theta = 90 degrees. This increase in bump height results from a collision of flow along the lower side of the resist sidewall which enlarges local current and thickens the lower edge of bumps. The effect of natural convection is also evident in the neighboring two cavities of 200 mum cathode width. The natural convection is not effective for cavities with less than 100 mum cathode width. The bump shapes become flat. Only diffusion occurs within these smaller than 100 mum cavities. (C) 2001 The Electrochemical Society. All rights reserved.</p

    Effect of natural convection on oscillating flow in a pipe with cryogenic temperature difference across the ends

    Get PDF
    The effect of natural convection on the oscillatory flow in an open-ended pipe driven by a timewise sinusoidally varying pressure at one end and subjected to an ambient-to-cryogenic temperature difference across the ends, is numerically studied. Conjugate effects arising out of the interaction of oscillatory flow with heat conduction in the pipe wall are taken into account by considering a finite thickness wall with an insulated exterior surface. Two cases, namely, one with natural convection acting downwards and the other, with natural convection acting upwards, are considered. The full set of compressible flow equations with axissymmetry are solved using a pressure correction algorithm. Parametric studies are conducted with frequencies in the range 5–15 Hz for an end-to-end temperature difference of 200 and 50 K. Results are obtained for the variation of velocity, temperature, Nusselt number and the phase relationship between mass flow rate and temperature. It is found that the Rayleigh number has a minimal effect on the time averaged Nusselt number and phase angle. However, it does influence the local variation of velocity and Nusselt number over one cycle. The natural convection and pressure amplitude have influence on the energy flow through the gas and solid
    • …
    corecore