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AUSLIACT

The goal of this investipgation was to contribute to
the understanding of natural convection effects in phase
change thermal control devices. This goal was acconplished
by developing a mathematical model to evaluate natural con-
vection effects in a phaée change test cell undergoing
solidification. and.then evaluating the model against experi-
mental data., Although natural convection effects. would be
minimized in flight spacecraft, all phase change devices
would be ground tested and thus understanding the effect
of natural convection on such devices and the ability to
predict ground-based system thermal performance become
quite important.

The mathematical approach to the problem was to. first
develop a transient_two-dimensional conduction heat transfer
model for the solidification of a normal paraffin of finite
geometry., Next, a transient two-dimensional model was devel-
oped for the solidification of the same paraffin by a com=
bined conduction-naturai-convection heat transfer model.
Throughout the study, n-hexacecane (n-CléH34) was used as
the phase~change material in both tne theoretical and the

experimental vwork. The models were based on the tronsient
two-dimensional finite difference solutions of the energy,

continuity, and momentum equations., The convection model
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assumed Incompressible flow except 2s rmodified in the gravity
terns in the eruations of motion.,

An experimental systen was set up to verify the
theorctical analyses and recsults., The system consisted
of a closed rectangular box inclined at various angles from
the horizontal plene, and cooled from below., The box was
completely filled with n;hexadecane (n-Cléﬂju), a long-
chain paraffin,

Gravity levels were calculated, depending on the angle
of inclination of the test cell. Tenperatures in various
parts of the cell were recorded by 24 thermocouples as func--
tions of elapsed time from the start of the experiments,
Comparisons were made betieen experimental results and
computer-calculated theoretical results. J—

Heat transfer when the cell was in the horizontal
plane was by conduction. Uith_the cell inclined at various
angles, the heat transfer rate was inereased due to com-
bined conduction-convection heat transfer. The cell was
generally cooled below the conduction temperatures, when
convection was also present. The shape of the phase inter-
face between the liquid and the solid phaszes was also changed
I'rom a flac plane to a curvea surface Ry convection, One
half of the test cell was cooled faster thon the other half,
during convective cooling. Convection was found to be an
Important parameter in the solidification process,
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Remarkanky goou agrecnent was obtained betweon experi-
mental data for solidifiecation with conduction heat transfer
and caleulated results from the theorctical transient twoe
dimengional conduction-heat-transfor modecl. Close agreement
was also obtained between experimental data for solidification
with the test cell inclined at various angles and the theoret-
lcal results from the trarsicnt two-dimensional conduction-
natural-convection heat transfer model. The trend of the
effect of convection on the system was clearly revealed by
both the experimental.and the theoretical results.

Stability provlems. were encountered in the finite-
difference solutions of the theoretical heat-transfer models,
Central differences were used to eliminate the dependence of
the finite-difference time step on the unimown velocity com=-
ponents in the convection equations which would have occurred
1? forward or backward differences had been used. Naximum
allowable velocities were severely restricted by stability
requirements of the finite differences, so that we could not
use as high velocities as we would have liked to in the solu-
tions of the convection-temperature equations. In addition
to these restrictions, more severe restrictions on the magni-
tude of a time step were imposed by the need to minimize

errors due to numerical dispersion on the theoretical results

from the natural convection model. Numerical dispersion error
terms, introduced by the neglect of second-order time derive
atives in the central difference approximations of the bounde
ary layer enerpgy equations, could not be eliminated entirely,
but they were minimized to less than 10 percent by the use of
very gsiall time-steps.,

This study is a firct attenpt to model the effects of
natural convection on a solidifying system with moving bounde
aries. It is also a good basis for further, more rigorous
analyses in vhlich the energy, momentum and continuity equa-
tions may be solved completely.

v




3

i

LISW CF TAPLYES o v o o o 6 o o o o o o o »
LIST OF PIGURES 4 4 o o o o o o o o o o o o
TUTR0DUCTICT e v 4 6 o v 6 o o o o o o o o o
LITERATURE SURVEY v 4 v v 2 o o o o o o o &
THEORETICAL AYALYSIS: o 4 o o 0o s o o = o &
Pormulation of the Problem . . . © e e
Approximate Velocity Profiles. o . . .
Finite-Difference Approximations of
Governing Temmerature Egquations .
Calculation of the Phase-Change Rate
and the Helght of the Solid Phase .
Stavility Criteria for the Finite-
Difference Approvinations o « o o .
Error Analysis of the Central Differ-
ence iicthod Useds = o o o 6 .0 o o &
EXFPERILENTAL EQUIFLELT ALD PiOCEDUAR. e .
EQUIDMENT. o o 4 o o o o o o o o s o o

miperiuental Froceodure o o o . ¢ o o o

10
10
17

28

30

32

— 36

L

COHPARISOL OF EPu2INIITAL AL PHEORETICAL RESULTS 45

Test for the Reproducibility of
Dxperinental Data o o o o o o o o

Prosentation of Zxperimental aad

Theoratical Data. ¢ & o s s e & & e

CO LUSIO..») A .) uuCOul.u.. ATIC '5 & o e e o o

nOA.Ll 'CII J.bAAh‘. [ ] [} ] [ ] [ L] . L] . [ [ (] ° [ ] (]

H! ) B i

L5

97
102




LIZEATCAE CLTED. 0 0 6 6 o 6 o o o s svee o o o 1006
ATPEIDICES
| A, Dxperiventel Dabd o v e 0 6 v 0 0 W W 110
| ' Zo FORTRAL IV Computer Procram "CCUDET, Py
| For solvin~ iLither the Conduction iodel
or the Combined Conduction-Coavection
iiodel of Solidification Feat Transfer . . 111

C. Other Theoretical Considerations. « « o « 118

vii

| A _

4
~a



Table

1.

2,

3

b,

5
6.

Te

TIST OF TABLES

Time increments and velocities allowable
by stabillity criterias o o« o o o o o ¢ o o

Check for convergence of finite-differ-.
ence_solution of the conduction nmodel. o

lagnitude of dispersion coefficients

eompared to the thermal diffusivity A, of
theliquid...... o 6 5 o o o o o o
Thernocounle locations in test cell, « + &
Beproducibility test between Runs 9 and 10

Experimental Runs listed in reproducible

pail"s... ¢ 8 8 o ¢ o s * a_b s s 8 o s

Gravity levels at start of convection (Q).

viii

33

36
40
48

49
53




LIST OF PICURES

Fimure

1.

2o
3

9.

10,

1l.

12,.

13.

14,

15.

16.

A section of the test cell with co-
ordinate system indicateds s o o o o o o

constant¢ .

i

Sketches of streamlines, ¢

Horizontal velocities, -u/B, at coup-
1iﬂ7 pOlnt, X"w'/Zo ¢ o v ¢ o & 0 o o

Finite-differcnce grid and nodal ar-

rangemente o o o o s o o s 4 s s 6 6 6 e—s s

Thermocouple locations in test cell, . .

Block dilagram of assembly of main.
experimental equipments o« o o o o ¢ o o

Graphical. test for- reproducibility
of exoerlmenual datae o o o o ¢ ¢ ¢ o o

Experimental and theoretical data .for
Run 2: « = 0% 5 T, = 300,66 %K + + + & &

Experimental and theoretical data for
RUﬂB:a:-'OO;Ta:BOO.lloK.oooo

Experimental and theoretical data for
Run 6: c = 150 ’ Ta = 298.7201\: ¢ o o s

Initial streamlines in test cell (theo-
retical) L ] [ 3 L ] L ] [ ] L ] [ ] . [ ] [ ] (3 L ] [ ] [ ] [ S

Height of solid at @ = 15% & o ¢ o & « &

Interface shape at t=7200 sec (theoreti-

cal)e o ® 4 ¢ o & & o & & & 6 & £ o o &

Lxperinental bud theoretical data for
Run 7: o = 60 'I‘a = 200,720Ke o o o o &

Exnerimental and theorotiun data for
Run 9: a = 300; = jOl.!. l{o ¢ o o o o

“xperinental ~nu theorﬂtical data for
Run 11: a = 459 = 300.11%K. ¢ o+ o

ix

Page

20
24

24
39

¥
47
54
57

60

65

66

66

67

73

9




Pigure Page

17. Experimental and thkeoretical data for
un ll!‘: & = 1-1'50; Ta = 30101"901\';» ¢ . 06 o6 & o+ e—s 85

18, Experimentnl and theoretical data for
Run 15: o = 600; Ta = 30101‘,’90}{0 ¢ o o o s o o o 91




INTRODUCTION

Fhase~change phenomena have received wide scientifiec
attention for some time and are of significant importance
in many technical problems such as solidification of a
billet, formation of snow, solidification of an asphalt
layer, melting of alloys énd growth of crystals, Recently,
phase-change materials have been seriously considered for
spacecraft thermal control. In concept, such materials
would be used in passive systems enploying the process of
melting or solidification to remove or add themal energy
from or to a system. Thernal control systems based on
solid~liquid phase change have many advantages which make
them useful for certain applications. They are light, easy
to handle, and easily used as wall=-lining elements around
electronic ecquipment.

When a phase-change thermal control material goes
from the solid to the liquid phase or vice versa,
currents may be set up in the l1iquid phase by temperature
gradients in the system. Thesge temperature gradients affect
the denslity of the material and hence the force of gravity
on i%. Thns, the resultant convection is known as gravity-
induced or natural convection., It is not a forced convec-

tlon since no initial bulk flow iz forced on the systen.

1
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The presznt investipgation was aimcd at studying tle
effect and importance of such natural convection currents
on the rate of solidification, temperature profiles and
the shape of the interface of a phase-~change material,
n-hexadecane (n-CléHju), a normal long-chain paraffin that —
is liquid at normal room temperatures. It was hoped that
the investigation would Help reveal any influence of natural
convection on the ability of such a phase -change material
to control the temperature of an instrument around which -
it is packaged. If convection increased heat transfer

renmarkably, a—decision would have to be made as to_the _

sultability of using such a material in _the liquid phase

for thermal control,




LIZERATURE, SURVEY

Fuceh theoretical work has been Prescented in the
literature Gealing with problems which are related to
physical change of state, The bacic feature of such Pro-
blems is the existence of a moving boundary or surface
between phases. Therefore, the problem that is most often
considered is how to determine the way in which this sup-
face or boundary moves. Heat may be liberated or_absorbed

on the boundary; there rmay be a velume change accompanying

the change of state, and the thermal properties of the phages

on either side of the interface may be different for the

phases and may vary as the change of state proceeds, There-

fore, the problem is non-linear in nature and general.ana-
lytical solutions for it are not available., Some exact
solutions for models that mathematically approximate the
real problems have been obtained, mostly for infinite or
semi-infinite geometry.

Carslaw and Jaeger(l) were among the first to give
in-depth trecatment of melting and solidification problems,
They cemmented on the need to use nunerical and finite-
difference methods in golving many of the complex problems
that arise in finite geometric configurations,

Many of the solutions Presented in the literature

of phase-change problems are valld only if the material
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under study is initizlly at ite cquilibriuwm temperature
for chanze of utate._They lgnore the most frequently
encountered case in whieh the material under study is
initially at a temperaturc quite different from the phase-
change temperature,

Stefan(Z) was the first to give a published discussion
of a one-dimensional transient conduction problem 1ith phase
change, for a single component or eutectic composition with

constant properties. Thus, the term "Stefan's Problem"

came to be used to describe a one~dimensional conduction

problen in vhich a semi-infinite glab initially at a constant

non-zero temperature, has one face maintained at Zero temper- -
ature for time greater than zero. The solution to the pro- .
blem entailed the assunption that the time-dependent interface
position was proportional to the square root of the product

of time and the thermal diffusivity cof the material of the .
slab, |

Danckwerts(3), Booth(n), and Kreith and Romie(5) have

all presented analytical or semi~analytical solutions to |
phase-change problems uvnder various boundary and initial ‘
conditions. Chao and Weiner(é) investigated the temperature i
in a solid-liquid system while the liquid was being poured. |
The latent heat of phase change was treated as s "pseudo" -

speeific heat and the solution, obtained by a lLaplace trans-

form technique was an integral that was solved numerically,

" -



lany authors used the variational technique to solve-
heat transfer problems, with or without a phase change.,
Chambers(7), Biot and Daughada (8) used this approach,
Elot and Daughaday studied an ablation problem in which
the melt was removed as it was formed,

The heat~balance-integral technique, an analytical
method that gives approximate solutions to a wide variety
of heat transfer problems, is used in many papers. in the
literature. It is mostly used to solve non-linear problems
that must be solved numerically or approximately. Its big
advantage is that it changes an energy equation from a partial
differential cquation to an ordinary differential equation,
One disadvantage of this method is that the solutions ob-
tained satisfy the differential equations only on the average.,
Goodman(9) and Poots(lo) have used this method to study heat
transfer problems..Poots studied the two-dimensional inward
solidification of a uniform prism initially at the fusion
temperature,

In the study of more general cases of phese~change
problems, numerical analysis may be the only feasible tech-

nique available. Dusinberre(ll) (12)

» Pujado y Ukanwa,
Stermole and Golden(13) hove all uged finite-difference
techniques to study phase-change problems in viich the heat

transfer mede is by conduction only.

Miller(lu) used the "surplus temperature" technique




in an attemnpt to ilmprove the predictions of the phase front.
To account for the heat abesorbed at the phase front, the
calculated temperature was pernitted to exceed the actual
melting temperature until an arbitrarily sclected tempera-_
ture was reached., WYhen this temperature was reached, the
grid element containing this particular nodal point was
considered to have changéd phase, and the phase front was
shifted to the next ncde.

Ehrlich(}S) gave the implicit finite-difference
equations for the one-dimensional melting problem with a
variable heat input specified as a function of time. The
implicit equations were then put into tridiagonal matrix
forms for easy solution by Gauss elimination ard by back-~
substitution., Special medified equations were given for
nodes near the freezing front,

The Northrop Corporation repprts(lé’ 17) presented
a survey of the phase-change problems involving selection
of the proper compounds for phase~change thermal control
devices, evaluation of properties, and experimental study
of different test cells., Some of the physical properties
used in the present study on n-hexadecane have been taken
from these reports...

Other works on phase-change phenomena include Bannister
and Bentilla(ia), Grodzka and Fan(19), and. Chambre(zo). A

survey of many papers on phase-change phenomena has been
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presented by liuehlbauer ang Sunderland.(zl)

Convection in enclosed fluids has been studied exten=--
sively. Unfortunately, most of the studies have been either
only experimental with no attempt at theoretical modeling

or only theoretical with no experimental corroboration,
addition,

In
the majority of the studies on convection deal

with flat or parallel plates and on gases., The works that

do deal with completely- enclosed liquids often have theo-
retical solutions that hardly, if ever, approximate real

situations closely,

Some good texts for theoretical references on heat trans-
fer and fluid flow are Rohsenow and Choi(zz), Schlichting(23),.
Longuell*) | and pird, Stewart ang Lightfoot ?3), Tne 1ast

two references. were used as the references for developing

the basic boundary-layer equations for gravity=induced con-

vection in the present study.,

Wilkes and Churchill{?®) stuated tempernture profiles

in an encloseqd rectangular cavity subject to adverse temper-
ature gradients, Their equations for gravity~-induced free
convection were developed from the basic equations of con-

tinuity, motion and energy. The resultant system of equations

was solved by an implicit alternating-direction technique
developed by Peaceman and Rachford.(27)
Chandrasekhar(ZB) gave an extensive treatment of

stability and Instability in fluids subject to adverse




temperature, cravity and mamnetic effects. _-The method used
by Pellew and Southwcll(29) to linearize temperature and
velocity equations was .2lso discussed., It involved -the
solution by the separation-of-variables technique, the
equations of continuity, momentum and energy in order to
determine the critical Rayleigh number (gh3AdL/xLDEL) nec=
essary to initiate free éonvectionvin a8 t'iuid heated from
pveLow. The method asswied that motion in fluids heated i'rom
below was celiular and involved t'inite nurivers of rolls
correspoading to particular wave numbers,

Leont'ev ana Kirdyasnxln(Bo) studiea coanveccvion in
fluids o1 Large voluuzes, Lney assumea that, except ia tne
boundary layer which was very small relative to the dimen-
sions of the fluid, motion was by ideal {low. However, the
maximum velocity occuwrred in the boundary layer, near the
walls, where the tenperature gradient or heat flux was
largest, This ideal-flow approximation_for natural convec-
tion in conpletely enclosed fluids has been used by other
authors.. . The velocity profiles used in the present study
assuned ideal flow profiles similar to their models., This
approach was necessitated by the difficnlty in satisfying
all no-s3lip conditions on rigid boundaries of completely
enclosed fluids,

Bain(31) performed a two-dimensional experimental

study of gravity-induced convection in an enclosed liquid
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in a rectanpgular cavity inclined at an angle from the hor-
izoantal plane, Solid-liquid phase. change was also involved.,
Personal communication with Mr. Bain has revealed that_he
is presently involved in providing theoretical ideal-flow

models to predict his experimental data.




THEORATICAL ANALYSIS

Formulation of the Problem

The_physical problem to be studied. is the salidifica-
tion of normal hexadecane enclosed in a cell cavity of
height h (initial height ho) and constant square cross-
sectional area of lateral dimension W. The cell is inclined
at angle o degrees measured from the horizontal plane, The
coordinate axes and their origin are located as shown in
Figure 1 with x along the cold bottom plate and y perpen-
dicular to 4t,

Some physical properties of the test material, n-
hexadecane (n“cléHBQ)’ were taken from Reference 17:
Density

S0lid n-hexadecane: dg = 1,0772-8.41 x 10'4 7 gm/cm3

for T ¢ 290.0% ' -

Liquid n-hexadecane: d.=0,9726-6.813 x 10~% T gm/cm3

for 290.0% 4 T ¢ 400.0%
Specific Heat
Solid n-hexadeane: cpS=O.505 cal/(gm-°K )
for T ¢ 290,0%

Liquid n-hexadecans: ¢ ;=0,1626+1,164 x 1073 T cal/(gn-k)

for 290.0% ¢ T & 480.0%
Thermal Conductivity

Solid: ks=2.390 X 10~3-3.04? X 10-6 T watt/(cn-%)

10




FIGURE 1.

A SECTION OF THE TEST CELL WITH COORDINATE
SYSTEN INDICATED.

gﬁ“%ﬁ?-.”
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Liquid: k;=2,390 x 1073 - 3,047 x 1070 T watt/(cm-%)
for 250°%K £ T ¢ 425%

290,0% = 16,7%

Latent heat of solidification: He = 56,67 cal/gm

L}

Solidification temperature: Tf

The cold bottom plate is maintained at temperature,
T(x,0,t) = £(t). The effects of natural convection,_ induced
by censity and temperature changes, on the solidification
rate and the temperature profiles of the paraffin are to
be studied as functions of time and angle (equivalent to
changing gravity levels). By changing angle @, one may
vary the components of the force of gravity acting on the
system., Only density changes affecting the gravity term in

the equations of motion are considered,

For this investigation, temperature-averaged properties

are used. The following properties, obtained by experiment

and from References 17, 32 and 33 are used:

Te = 290.66%K (experiment)

dg = 0.833 gm/cm3 (experiment at 268,29K)

d; = 0.755 gm/em’ (cxperiment at 29%4,7°K)

dp = density of plexiglas (material of cell wall)

i

14155 g;m/cm3 (experiment at 298°K)

From Reference 17:
B = =6,813 x 104 gm/(cm3-°K) (from dp=d; , + BT)
o= 0.506 cal/(mm=°K) (at 296,0%, the average temp-

erature encountered in the liquid phase)
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Chs™ 04505 cal/(gm="K)
kS = 3,720 x 10'}’L cal/(sec-cm-K) (at 280.2°K, the
average temperature encountered in the solid phase)
ki = 3.5553 x 10~ cal/(sec-em=-kK) (at 296.0°K)
From Reference 32:
kp = plexiglas thermal conductivity = 4,960 x 10'4
cal/(sec-cm-"K)

cyp= Plexiglas specific heat = 0,35 cal/(gm-°k) o

From Reference 33:
P = kinematic viscosity of n-hexadecane = 0,04 cm?/sec .
Prediction of the rate of solidification and the ‘w1
temperature profile of thie test paraffin wmder é glven set
of initial and houndary conditions are to be made using "“
(1) a conduction model and (2) a combined conduction-convec-
tion heat~transfer model. The following derinitions are
used: For a function f(x,y,t),

6/t = £, ;5 625/6¢2

Lop 3 O88/6x = fy s 62f/6x2=fxx;

or/y = £ ; 520 /6y% = fuy 5 820 /6xby = Ty (1)
DE/DG = £y + uf, + vE, (2)

With these definitions, we have

(1) Conduction Hodel ; temperature equations: \

Liquid phase
Ty = AL (Txx + Tyy) for Y(x,t)z_y'g,ho, (3)

T(x,Y,t) = Tp (i)

T e T RS e i i




'
1h
T(x,ho+hp;t) = Ta (11)
7, (0,¥,8)_= T (4,¥,t) =0 (111)
™(x,y,0) = Ty, (iv)
Solid phase |
T, = Ag (Txx + Tyy) for 0Ly ¢ Y(x,t) (&)
T(x,Y,t) = T, (1)
T(x,0,%) = £(t) (i1) 1
Ty (0,¥,8) = T, (W,y,t) = 0 _ | (1i1) ;
T(x,7,0) = T, (1v) g
In Equations (3) and (4), T, is ambient temperature, h ‘1

p |
is the thiclmess of the plexiglas wall of the test cell K

and A =;k/(dcp) is the thermal diffusivity of_the test

O material. Wo equations of motion are involved in the con-

duction model.

(2) Combined Conduction-Convection Model

Temperature equations:

Solid phase:- XEquations (4) apply. ]

Liquid phase ‘
DI/Db = Ap, (T, + Ty.) (5) |

Viscous heating is negligible. The boundary conditions (1) to

} (iv) of Equation (3) apply herc also.

Equation of Continuity:

s ux+vy=0 (6)
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for an incoupressible fluid.,

Equations of lNotion: -

The Navier-Stokes' equations of motion for an incompressi-

ble fluid are
dL Du/Dt

Ay, v (uXx + uyy) ~ P, -d;g sina (7a)

-dLL7 (.vXx + v

dL Dv/Dt vy v

Velocity components u and v are each zero at each of the
walls, x =0, x =4, y =0, and y = hoh At time ¢t = 0,
velocities are also equal to zero.

The temperature equations for both liquid and so-
1id phases arec coupled by an interface equation for phase
change involving enthalpy change during solidification, This
is true for both models: conduction and combined conductione-
c¢onvection models., The proper phase-change equation will be
discussed later.

Equations (7) may be modified as follows, Let .

P =7 + p, where P i3 the value of the pressure in the test
cell when there is no motion. Also, T and EL are the values
of temperature and the density of the test material (liquid)

when there is no motion. When there is no motion, Equations

(7) become
0= - ?; - &0 sina (7'a)
0= - F& - aig cos a (7'b)

Uhen Equation (7'a) is subtracted from Equation (7a), and

) = P - L8 cos & (7v). .
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(7'h) from (7b), the followinz modified cquations are obt-
ained for gravity-induced natural convection as a result of

temperature-caused densgity variations in the test material,

Du/Dt = v (u, + W) = p,/dp - 8a(T-T) sin a (8a)
q,

Dv/Dt = v (Vo * “yy) -D {'EI - 5z(T-T) cos a (8b)
a4,

vhere B(T-T) = dp = EL. Equations (8) include the effect of
the angle of inclination of the test cell from the horizontal
bplane, Thus the normal gravity level is modified by the angle,
Qo
Equations (8).may be further modified as followsg
Let a stream function, o(x,y,t), be defined by the two
equations
u= -0 (92)
vE o Py (9b)
Thus, Equations (9) automatically satisfy the continuity
equation (6). Define a vorticity, w(x,y,t), by the two
identical equations
@ = v o-uy (10a)
W =Pyt Pyy (10D)
Differentiate Equation (8b) with respect to x and Equation
(8a) with recpect to y, and subtract the result of the later

operation from the result of the former., The resultant
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equatlon becomes, on the application of Equation (6) oand
Equation (10):
D /Db = 1 + ) + ?ZE ((1-T) sin @ - (2-T),cos ) (11)
L

Thus, Equation (1l) replaces—Equations. (8) as the equation
of motion. The pressure terms drop out of the equations,

As is showm in Appendix C, limitations imposed by .
stability criteria for stable solutions by finite-difference
approximations of Equations (5) and (11) or (5) and (8)
simultoneously could not be satisfied within the limitations
of digital-computer time and memory available to us. In
order to get meaningful results from these full equations.
of notion and temperature, one would have to use very small
time and space grid elements, values that are too small to
allow for the acquisition of meaningful theoretical data
within.the time and memory limitations vermitted to these
investigators by the uwiversity computer center. _
Therefore, thac approach to be used to obtain approx-

imate solutions of Equations (5) and (8) is to use approxi-

mate velocity profiles obtained by conbining an ideal-flow
model with a viscous=flow model.

Avproximate Velccity Profiles

Assume that (TJT)x is negligible, compared to (T-T)y.

(a) Ideal-flow Model (liaintained Convection)

5
P D S |
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Let T-T = ¢ u(x,y,t) where ¢ is g constant, and let

W=-w q P(x,¥,t) where q is a characteristic constant,

Algo, assume that ¢ (x,y,t) is separable into a product of
functions of x, y and t. Irom Equation (11), we get
¢ = p Bgc .
t— (yxx + ¢yy) o+ ‘:?‘¢&y sin « (12)

with initial and_bowndary conditions,

¢(Ogy:t) = 99(’.-1,y,‘c) =-(P(X’O;t) =-(P(_K_,h,t) - (13)

When Equation _(12) ig solved-by the separation-of-variables

method, we get

_ (nl)mx oy (2med)my L r® (2me) 28 o
¢n,m'An,mSin = _sin___h entt(q+ )

qaiuhz z
2, (2041)2  (2me1)2 - — (L)
where q = 7°( = + "3 )y m=0,1,2,.4.; n=0,1,2,..,

For maintained motion (independent of time), the exponernt

in the exponential term is zero, that is
2h2

C..

w-dequ

T ———— St

(15)
w2(2m+1)233

When Equation (15) is put into Equation (14), we get

gin(2n+l)mx . (2m+l)nwy
vin __w e uin h s (16)

m=0,l,2;.....; n=0,1,2,00000

Pa,m = A,

Equation (16) is analogous to the cquation for the vibrationsg

of a string in which q (kquation 14) gives the character-

istic nunvers corresponding to the modes, If n=p = 0, we
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get a sinmle circulation flow (one finite roll) in the test
cell, If eithor n or m or both are not equal to zero, multe
iple rolls_result. Pigwre 2 shous skectches of the rolls that
would result for various values of m and Ne .
(b) Viscous-flow Lodel (Firgt-order Kontorovich profile
approximation by variational method).

Assune that T-F =.yATo/h » vhere AT is the temp-
erature difference betwecen the hot rlate 5t Y = h and the 1

cold plate at y = 0., Also, assume a steady-state solution

and negligible pressure variation in Equation (8a), There-

fore, Equation (8a), as modified, becomes

u,. +ou, - PBYAT,

XX Yy T = gina = 0 (17) "
d.’h
L |
. _ 3,3 L, 4
Assume a proflle,q9— hiy/h - 2y°/h? + y7/n%) X(x) (18) __

uhere the profile has been made to satisfy in the y-direction
the boundary conditions of Equation (13) for a stream func-

tion. From Equations (9a) and (18), we get
u = (1 -6y%/n? + 4y3/m3) x(x) (19)

The function X(x) is to be determined by variational technique

and should satisfy the boundary conditiong '

X(0) = X(u) =0 (20)

The appropriate equation for X(x) by variational method is
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obtained by integrating the product of l—6y?/h2+4y3/h3 and
Equation (17) with respect to y between Yy=0and y = h,
The definition of Equation (19) for u is enployed in the

integration. The resulting equation for X(x) is

dz}(/d_xz - (168/171’12) X + zggﬁ?-osin a =0 (21)
17 @

On solving Equation (21) with the bowndary conditions of

Equation (20), we get

h 2
x = Bch ATO sin o

(1 . Sioh Y(U-x)+sinh yx ,

- (22)
UV, sinmn yy

where Y

TEE/T7Y /a... (23)

Therefor, the first-order Kantorovich profiiles are

u = -B(l-6y2/h2+4y3/h3)(l-sj'nh Y(W-X)‘l:sj.nh YX) (243)
sinh yW
_ , 3.3 b, 4 cosh y(W-x)=cosh yx 2lib)
v = BYh(y/h"zy /h +y /h )( sinh Yw (
sinh y(W-x)+sinh yx
P = Dh(y/n-2y/nd4y* 0) (Lo —— o ) (24c)

vhere B = -th%STo sin a/(24vﬁi);

The stream function of Equation (2uc) glves one finite roll
(singlet flow). As it turned out, however, a single symic-

tric roll could not predict the cxperimental data in all

.

-~ 4 ak _ &
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sections of the test cell, It could predict only one half
of the test cell (&x<ii/2)., lultiple rolls given_ by Equa-
tion (16) vhen at least one of m and n is not zera, do not
predict the entire cell performance either.,

Hence, a.modified profile involving a combination .
of Equation (24c) and Equation (16) for.n = m = 0 was used
to get a single roll, non-symmetric in the_x-direction, but
symmetric in the y-direction..Equation (16), for n = m = 0,

was allowed to apply for. 0.& x & W'/2, so that at x = W'/2,
. - i T
v =0; and u = --AO,(}_h cos ¢y (25)

Equation (25) was obtained by applying Equation (9a) on
Equation (16) and letting x = W/2, W!'/2 nust satisfy the
relationship 2h & w'/z,g W, The second portion of the
stream functicn profile was obtained by using Equation (24c)
in the.range W'/2 L x € W, In addition, v from this profile
vas set equal to zero at x = W'/2 so that u for this part.

became

u= ~B(l-6y2/h2+4y3/h3)mat x=W'/2 (26)
BEquations (25) and (26) should yield the same values for
u at x="'/2, They both go to a maximum, a minimum and zero
at the same points: y/h = 1, 0, #, respectively. Thus, the

maximun value given by Equation (25) was set equal to the
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maximun value given by Equation (26) to get Ay C=Bh/ﬂ.
9

Thus, the complete stream function that was used was

Bh,_ . mx: . Ty
- Sll“-..w‘;lnﬁ- s for 0 & x ¢ WY/2

(P Dh(y/n-?yB/hB»i-yu/hn) (1.5inh ¥ (¥-x)+sinh Y(w-!-x-W'))
sinh y(2u=-W')

- (27)

for /2L x¢L W

Figure 3 shows graphs of u from Equation (25) and u from
Equation (26) at the merging of the two portions of the
stream function in Equation (27), that is, at x = W!'/2.
For the.present study, W!/2 was chosen as 0.95 V.
S0, the final form of the resultant stream function profile

that was used in this stuvdy is

Bh
s X my
ﬂ-—- s::.nl.%J sin,ﬁ,_, for 0L x¢& 0,95V

Bh(y/h-2y3/h3+y4/hl"") (1-Sinh y(¥-x)+sinh y(x-0.9 W)_)w

ginh 0,1lyW
for 0,95 W& x € U (28)

The introduction of the definitions in Equation (9) into
Equation (28) gives u and v. Hence, Equation (28) is used
in the finite-difference solution of Equation (5) to obtain
the convection temperature profiles in the liquid phase.
Since the engle, o y, @appears only in the term B, Equation
(28) indicates that the angle of inclination, a, affects
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the mognitude of the velocities bub not their shape, In
Zquation (28), h is the time~-devcndent helght of the liquid
phase which becomes smaller than the height ho of the test

cell cavity as solidification continues.

Pinite-Differeonce Anorozimations of Governing Temperature
Eauations |

The following definitions are used, Irmore third-
order derivatives., Figure 4 explains the space~-grid arrange-
ment,
Central-~difference.appro.imations

T(i+1,J) - T(i=1,])

N =T, (291)
X
T(i,§+1) - T(i,3-1)_ -
2 oy =Ty (2911)
T(i+1,J) = 2T(4,3) + T(i-1,3)
(a_x)z = Txx (29114)
T(1,J+1) - 2T(4,3) + T(i,j-1) . (291v)
= v
(ay)? . vy
Forward-difference approximations
Tt(1,§) - T(L,5)
" = Tt + %AtTtt (29v)
T(441,3) - (4, ]) ,
 x = Tx + ';;AXTxx (29vi)




N

T(1,3+1) - T(1,])

= T+ 30yT, ..
aY M yy

Backward-difference approximations

T(1,3) .- T(i-1,])

(1,3) = T(1,3-1)

T w 36xT
Ox X XX

Coefficients:

Q
N
I

G9 =

Gio

- ZOYyT
oy vy

L - 2ot(1/(ex)2 + 1/(e9)%)

= Aot/ (6%)2

mt/(oy)2

= Zch h + chpLay - -

PPp

= kLAy + 2kphp

20t

=1 - -f-c—1-(02/(£>x)2 + kL/ay + kP/hp)

56,/ (C4 (6)%)

= ZAtkL/Croy

2atkP/cth

=G, + u(i, jlot/20x

G2 - u(i, j)ot/26x

o~

= G3 + v(i,j)ot/206y

Gyq = Cq = v(i,j)ot/20y

26

(29vii)

(29viii)

(291x)

(301)

(30iL) _

(3041i1)
(301iv)
(30v)

(30vi)

(30vii)
(30viii)
(301x)

(311)
(3141)
(31114)

(31iv)




e

[N 3

i
-
.
»
4

On the application of the central-difference. space

definitions and the time~forwvard-difference definitions to. - o’

Equations (3), (4) and (5), we get the following sets of

equations. Second-order time derivative is ignored.

(1) Conduction lModel

Liquid phase
T'(i’j) =

T1(1,N) =

TH(M,N) =

Solid phase

T'(i,:) =

G T(1,§) + Cpp (T(141,)) + T(i-1,5)) +

Gap (T(1,541) + T(1,3-1)), for 2 £ 1 & N-1
and N3(i)+1 £ § & Ne1 (324)

= Gy T(1,3) + 26,1 T(2,3) +.Gqyp (T(1, J+1)

+ T(1,3-1)), for NS(1)+1 £ j & N-1  (32ii)

Gy 2(H, §) + 26,y T(M=1,§) + Gqp (T(H, j+1)

+.T(H,3-1)),  NS(M)+1 £ j & N-1  (32iii)

GuT(i,N) + G5(?(i+1,N) + T(i-1,N))+
+GT(1,N-1), for 2 & 1 & N-1 (32iv)

GyT(1,)) + 265T(2,N) + GgT(1,H-1)

+ G,Ty (32v)
Gy T(1,N) + 26G5T(H=1,N) + GgT(M,N-1)
+ GoTy (32vi)

G1ST(iiJ) + st(T(i+lij) + T(i-l’j))
+ G3S(T(i,j+1) + T(4,j-1)), for
2& 146 NM-1, 2¢& & NS(1) (331)

[ PUY R~ S S
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TH(1,3) = Gy gT(1,3) + 2G,sT(2,3) + GBS(T(1,3+1)
+ T(1,j=1)), for 2 & § £ NS(1) (3314)
TH,§) = Gy (i, 3) + 26,T (=1, ]) + Gag (01, §+1)
+ W(M,j=1)), for 2 £ j L NS(M) (32111)
T'(i,1) = £(t), for 1 £ L & K (331v)

(2) Combined Conduction-Convection Model
Solid phase:~ The solid-phase Squations (331) to (33iv). of
the conduction model apply here in their entirety,
Liquid phase
THL,3) = G T(L,3) + GarT(i~1,]) + GopT(L+1,]) +
Gyop,T(1,5-1) + Gy, T(%, j+1), for
2L 1L HN-1, NS(i)+1 £ § £ N-1 (341)
Equations (32ii) to(}Zvi) also apply here in their entirety,
In Equation (32) to Equation (34), subscripts L
and S on a coerficint imply that the_properties of liquid

and solid test material are to be uged respectively,

Calculation of the Phase-chanse Rate ond the Height of the

Solid Phase

In Equations (32) to (74), NS(i) is the number of
y-nodes in the solid phase given as a function of horizon-
tal location x (that is, i8x). Thus, the height of the
solid phase at any time t is giQen by the equation

T(1,8) =oy(Us(1)-0.5), for 1L1LM and NS(1)a2 (35)
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If NS(1) = 1, then Y(i,t) is on the cold bottom vlate and is
equal to oy/2. N3(i) and Y(i,%) must satisfy, at any time,
the following incquations.

1L NS(L) £ N, for 1 L i M __ — «361)

O£ ¥(i,6) & h, for 1& 1 £ N (3611)
At any time t, NS(i) is evaluated as follows, Firstly,
T(i,1,t) = £(t) is checked to see if £(t) ¢ Tee The first
time that £(t) L Tpy HS(i) is set equal to 1 for all
1£1i<H to see if ‘I‘(i,NS(i)Old_-!- 1) ¢ Too If 1t is, then a
new NS(i) is obtained from the equation NS(i) = Ns(ikld*'l
for-that particular i1, and thenceforth, that node is ...
treated as a node in the solig phase,

The latent heat of solidification is used to modify
the specific heat of the solid phase so as to incorporate
the effect of change of phase., It is assumed that, since
the rate of change of phase is so slow and the solid phase
1s at a much lower temperature than the liquid phase, most
of the heat liberated by sclidification goes to warm up the
solld phase in the form of sensible heat, Thus, an effective
heat capacity c:S y based on a lumped average temperature,
Tov = %(Tf+T(x,o,t)) = %(Tf+f(t)), of the solid phase is
defined to include ti.e phase~change enthalpy change:

Enthalpy change = Latent heat + Sensible heat gain (371)
per gram per gram per grau
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Thus, cps(’ff--'fav) =, + cpS(Ti.-Tav). (3711)
30, we obtain an cquation for the effective specific
heat cps :
¥* . .
Cpg ¥ Cpg * 2Hp/(Tp=1 (%)) (38)

c;S, instead of Cr3? 1s used in the calculations of the

temperature profiles of the solid phase in Equation- (30)
and Fquation (33). No separate interface equation is now
needed.,

Therefore, to summarize, when the temperature of a
node in. the liquid phase equals_or_drops below the solide-
ification temperature, Tpy the node is henceforth treated
as a node in the solid phase, and cgs, instead of cps, is
used to calculate solid-phase temperatures so long as
solldification is in progress. Thus, Equation (28) to
Equation (38) are sufficient to determine the temperature
profile, the rate of solidification, and the streamlines
in the test cell at any time t.

Stability Criteria for the Finite-Diffcrence Approximations
(1) Conduction Model

The stability criteria for this model are
G, 20 ; GO (39)

for both liquid and solid phases. I'rom Equation (39), maximum
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allowable &t for given &% and oy are evaluaied., Which-
ever ot from Lquation (39) is smaller is the controlling -
Ot for a stable solution, It is recomnended that.a smaller
value of &t than the maximum allowable Ot be used. The
smaller the value of &t, the smaller the error in the
finite-difference approximation gets, For our system, Gl
controls the allowable oot,
(2) Conduction-Convection Model

The stability criteria of Equation (39) also apply

here, Other criteria are imposed on velocity, thus:

927 Gy 2 05 and Gyp 20 (40)

These inequalities yield the following restrictions on u

and v:

(i, 3) & appx, Iv(s, i) & 2 /oy (41)

Thus, for a given &Ox or oy, a meximum allowable absolute

value of u or v may be determined. The resultant velocities

evaluated for our test material are small, a fact that
caused the difficulty in finding any stable finite-differ-
ence solutlons for the full-blown coupled equations of
encrgy and motion so long as the pravity term remained in
the velocity equations,

The velocities obtained by differentiating Equation
(28) with respect to x or y must satisfy Equation (41).
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Uith the experirentally-observed temperature difference
between the hot and the cold plates, we could not use the
full masnitude of Equation (28) without violating Equations
(41)., S0, we restricted the maximum velocities that we used
to be 95 percent of the maximum velocities permitted by
Equations (41), and the constant B in Equation (28) was
modified accordingly. If the maximun permitted velocities,
in stead of some slightly lower values were used, our
solution would be in the critical region.where a small
round-off error from the digital computer could_make the
solution unstable and meaningless. Table 1 gives the time
elements and velocities permitted by stability restrictions

and the actual values used in our calculations,

Table 1: TINE INCRE l;IT AlID VELOCITIES ALLOWABLE BY STA-
B SAORGERN

OX = QY; XL = 9,306 x 10'4 cmz/sec

Space Element Time Element u(max) v(max)
ax(em) Ot(sec) (em/sec) (ecm/sec)
0,25 17.33 7.32 x 10 g 2.75 x 1o'§
0.127 4,33 14,65 x 107 -3 5.49 x 10-3
0.0635 1.08 29,31 x 10~ 10.99 x 107

Actual values used:

ox = 0,127 cm; ot = 1.0 sec; u{max) = 13,92 x 10 -3 cm/sec;
v(max) = 5:22 x 10~ =3 cm/sec

Error Anolyvsis of the Central Difference Method Us Ised

(1) Conduction liodel

«_
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The terms ignored in the finite-difference approxi-
mations are of the order of (Ax)szx/é, (Ay)zTyy/é, and . .
%AtTtt. These terms ere assumed to be small provided ox,
Ay and Ot are small, Ve ran our digital~computer programs
for a squarc-grid system (ox = Qy) for-different values of
Ox and 8t, VYe found tha; a solution at &x = 0,127 c¢m, Ot =
2,0 sec was not much different from a solution at ax =
0.0635 em, Ot_= 1,0 sec (see Table 2), but involved quite
a large difference in computation time, Hence, we assumed
that the- solution had converged at 8x = 0.137 cm and At =
240 sec, and therefore, used Dt = 1.0 sec and Ox = 0,127 em

for computation.,

Table 2: CHTCI_FOR CONVERGICE CF FIRITE-DIFRERENCE SOLUTION
O WEHE CONDUCTLO.N OUBL
oK* oK*
Time &% = 0,127 cm Ox = 0,0635 cm
(1000 sec) Ot = 2,0 sec &t = 1,0 sec
. 0.36 299,636 299,638
1.44 293,139 293,150
2.16 291,272 291,277
2.52 290,622 290,660
2,88 290,185 290,205
3460 289,472 289,500
2.96 239,233 289,260
.62 288.766 2%8.212
5.0 287.557 287,60
5.76 286,361 286,161
6,48 285,226 285,202
7.20 284,161 284,112

* Calculated temperature
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(2) Conduction-Convection lModel

The errors inherent in the finite-differcnce approx-
imations of the conducticn model are also present in the
combined conduction~-convection model, But the most. import-
ant source of error is due- to hidden numerical dispersion
terms.. These are terms that. are introduced inadvertently
into the original tempefature equations (Equation 5), when
finite=difference approximations that ignore second-order
derivatives are used., In the backward- and the forward-
difference aprroximations both the second-order space
derivatives end the second-order time derivatives contri-
bute to these dispersion error terms, In the central-diff-
erence method, only the second-order time derivative

introduces the numerical dispersion error terms, This kind

of error cannot bec avoided by using time-implicit finitee. . ..

difference technigues., The numericzl dispersion errors

are revealed in the central-difference method as follows:.
If Equation (34i) is rewritten in terms of derivatives

by using Equation (29) without ignoring the second-order

time derivative, the resulting equation is:

ATy, + DT/Dt = Ay (T, + TN) (42)

By comparing Equation (42) aond Equation (5), we find that
an extra term %OtTtt has been introduced into the original
Equation (5) by the finite~difference approximation that

ignored second-order time derivative T e By differentiat-

t




ing Equation..(5) with respect to t, ignoring third- and
higher order derivatives, and intreducing the result into

Equation (42) we get, on further rearrangement:

DI/Dt = (A -buPBt)T 4 (AL—-?;VZAt)Tyy - uvAtT, (43)

- y

Thus, the finite-difference (central-difﬁerence) approx-

2 1,2
JA tTy‘x, "‘gv Txft _

and —uxfxyat.into the original Equation (5). These are the

imation has introduced .the extra terms =5

numerical-dispersion terms., The numerical-dispersion co-

%at and -uvot must be compared against

efficients ~%u20t, -5V
XL to see hovw nuech error is introduced. They could introduce
devastatingly sigmificant errors. Errors due to dispersion
terms do not arise in the conduction model but in models
involving the boundary-layer equations of energy and motion,
These errors can be reduced but not eliminated by including
higher-order derivatives of time in the difference approx-
imations or by reducing the magnitudes of the velocity
components and/or time step., Table 3 gives the magnitude
of the dispersion coefficients evaluated for our problem in
which A = 9.306 x 10~% cmz/sec, Woax = 1392 x 10~3 cm/sec,
and v ... = 5.2 X 10~3 cm/sec,

Note that, although it is desirable to decrease ay

and &x and thereby inerease maximun allowable velocities

due to stability restrictions, the dicpersion error terms




Table 3: FAGITMUNS ON DISPRRIION GOTFFICIEITS CONPARED
GO T T AL DL SV (KI_;) O THIS LIKUID,

A, = 94306 x.107% on?/sec 1
u = 13,92 cm/sec; v = 5,22 em/sec; . x = y = 0.127em

(sec) (ecm?/sec) (émz/éec) (em%/sec)

6.0 0.625h; 0.088), 40,468\
0 0.418MT - 0,059M7 ¥0.31217
2,0 0.208\f 0,029y +0. 15607
1.0 0,104\ 0,015\7 0,078\
0.5 %0

0.052x£ 0.007A

Ja% M %uzAt %VZAt uvat 1
L }
|

tion.model at different values of At for the. same ox_=gy j
) ’ =0.127 cm that was used for the conduction model, We found o
' that the dispersion terms did not make any significant |
difference at ot = 1.0 sec. At &t = 6.0 sec, the numerical
dispersion terms made a substantial difference in the
accuracy of the theoretical results. The time required to
complete a computer program to acquire the equivalent of
two hours of experimental time was prohibitive_for ot £ 1.0
sec. Perhaps, a faster computer would be very helpful. We
conjecture that the numerical-dispersion coefficient -uvat |
counteracta some of the effects of the coefficients -%u%At '
and -%VZAt; so that, when the last two-mentioned are of the

order of 10 percent of AL, tne net error effects are much

smaller than that,
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It happened also, that in our system, the maximum
temperature gradients in the liquid phase occur along the
y-coordinate direction; that is, in the direction such
that |vap>|uT£. Thus, v had a lot more influence on the
magnitude of the temperature profiles than u did. But a
glance at Talle 3 reveals that the error terms due to v
alone in the dispersion terms are much smaller than those
introduced by u. Thus, the numerical~dispersion terms did
not-have as much influence on the theoretical results as

as they would if the maximun temperature gradients had been

in a direction to cauge ]uTXV» |va|.




FAPRATI AT, BCUTIPLITIT ALD PROCEDURE

Fauipnment

The principal elements of the equipnent were a test
cell, a 24~channel multipoint temperature recorder, and a
refrigerator, The auxiliary elements were copper~constantan
thermocouples, a powen—dﬁiven liquid pump, methanol, some
Pipes and tubings, and a test-cell stand that could be S

swivelled to various inclined positions from the horizontal

pPlane., The test material, n-hexadecane, was liquid at the

amblent temperatures for the experiments., ;
Test Cell: The test cell (Fig., 1 and 5) had a cone- - 1

stant cross-section of external dimensions 12,70 cm, and

an overall height of 9.20 cm. It was composed of a copper ‘

cooling chamber soldered to ame face of a 0,32-cm~-thick

copper plate (henceforth referred to as tlic cold plate or

the bottom plate)which was in turn bolted and glued to /

one end of a plexiglas frame, The frame was glued and

bolted to a 1.27-cm-thick plexiglas plate on the other end,

Thus, the plexiglas frame, together with the plexiglas plate

on one end and the copper plate on the other end formed a

, 10.16~cm=square, 3.81~cm-high cavity with 1.27-cm-thick \

walls for containing the test material, normal hexadecane.

The cooling chamber was constructed from 0.64-cn copper

plates soldered together.

38 . |
l
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The test cell carried twenty-four copper-constantan
thermocouples located at certain measured locations., Table
(4) details the thermocouple locations., The coordinates
given in the table were located and fixed as shown in Filgure
(1) and Figure (5). The positions could be off by % 0.16 cm

because of the limitations in the measuring accuracy,

Table 4: THERNOCOUPLE LOCATIONS IN TEST CELL

X = horizontal distance (parallel to the cold bottom
plate), starting from left corner of teste-cell
cavity

¥ = vertical distance from cold bottom plate_— R

Each distance could be off by £ 0,16 cm

No. = the number assigned to a thermocouple

. No. X Y No. X Ng No, X Y
; (em) (cm). (em (cm) (em)  (cm)
1 2,54 0.00 13 2,03 1,52 3 0.00 2,54
4 8,13 GC.00 20 4,06 1.52 6 10,16 2,54
14 2,03 1.02 23 6,10 1,52 8 2,03 3.05
24 6,10 1,02 9 2,03 2.29 18 6,10 3,05
17 8,13 1,02 19 4,06 2,29 11 8.13  3.05
2 0,00 1,27 22 64,10 2,29 7 2.54 3,81
5 10,16 1,27 12 8.13 2.29 10 7.62 3.81

Temperature Recorder: The recorder was a 24-channel,

multipoint recorder sold by ACCO Bristol‘3*), model 66a-
24 PGC 570, that operated on 120 volts of 60-cycle alter-

nating current. It recorded temperatures in degrees Fahren-

B e SIS b St 138+
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heit in the range -100 °F to +200 OF ( 199.83 9K - 366.49 °K),
It had a chart drive speced of 2.54.cm per minute and print
Speed of 2 seconds per point. The chart could be read with
an accuracy of #0.27 %K (0.5 °F).

Pump: The pump used to circulate the coolant (methanol)
from the refrigerator to the test cell was a Chemical Rubber_
Company(35) "No-Seal' centrifugal pump, Model ABIPOOSN#.

It operated on 115-volts, 60-cycle alternating current only.
It could attain. 50 revolutions per second and pump from
L4h1,6 cc per secand at a head of 30.5 cm to 262,8 cc per
second at a head of 274,.3 em wnder normal atmosphefic

conditions,

Refrigerator: The refrigerator for the coolant was a

Bar Ray of.Brooklyn, New York, Model 557T refrigerator that
Operated on a 60-cycle, 115-volt alternating current. It
had a regulator that could be used to adjust the steady-state
temperature to which the refirigerant was cooled,

A schematic diagram of the assembled equipment is shown
in Figure (6). A two-way tap-control valve permitted the
circulation of the coolant in an auxiliary circuit auntil

temperature equilibration was achieved in the coolant,.

Experimental Procedure

The test material, n-hexadecane, (1liquid at normal room

temperature) was introduced into the test-cell cavity through

a filler-port., An excess of the material was allowed to
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collect in an expansion chamber connected to a reservoir

o' the testv-material., In this_way, air pockets in the test
cell were kept (9 a minimwa as tne solidification progressed,
Py the introduction of new test material to assume the vac-
ated volume,

The terperature recorder was. turned on at the same_time
as the pump was turaned oﬁ to circulate cold methanol to cool
the bottom plate of the test cell, By use of the auxiliary
circuit, a step change in the temperature of the test cell
could be achieved, Tne experiments were perforimed with the
cell inclined at the following angles trom the horizontal
plane: 09, 15°, 309, 450 and 60°, Stuaious attempt was
nade to approximate the sama starting conditions for all
runs-- the same cooling rate, the same low temperature for
the coolant and the same ambient temperature, The ambient.
tenperature was—approximately controlled by setting the room
thermostat at a constant level for about 24 hours before
an experimental run, Before each run thne thermocouples
vere calibrated on the recorder by testing against room temp-
erature as recorded by a nercury thermometer, \ihen .all
2% thnermocouples recorded the same temperature within
i0.27 OK, the experiment was begun, Room temperature was
watched continually during the course of' an experiment via
& mercury thermometer. The temperature at the start of an

éxperiment, as recorded by the 24 thermocouples, usually

B, e s
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did no: Jlate rrom that recorded by the mercury thermo-

meter by : ore thaa 1,1 9K, Flow of coolant was kept approx-
imately coastant from run to run by _opening all the valves

to thelr fullest extent, The pump had only one speed setting,

The low temperature of the coolant was regulared by the

"eut in' temperature of the refrigerator which was set- constant

at about 272 9K, lHethanol was used_as the coolant because

it stayed liquid at this low temperature whereas water be- -

came ice, With such a setting, the coolant could be_brought 1

to a low temperature of about 270 ©K,

The experiments were usually torminated after about
2 hours when more than half of “the test material had solid-
ified. The temperatures, read from the charts, were then
plotted against time. The bottom-plate temperatures were B
fitted into a polynomial function of time, comprising a ramp
decay followed by a constant temperature. For a given set.
of starting conditions, the experiments were repeated to
test for reproducibility.

The test material was practical n-hexadecane (n-016H34)
distributed by the Eastman Kodak Company(Bb) for chemical.
purposes. 1t had small impurities that influenced its solide
ification temperature., The solidification range was given
by the manufacturer as 291.0 %K - 289.2 %K, However, we

found that our sample froze at 290.6 9% (17.5 °C),

BT




GOLPAZIS0N _OF TR™RYiEITAL AND "HRORETICAT, RESULTS

Lest for the Reorodneinility of Experimental Data

{ i Iwo experimental runs under similar conditions of

L : angle ot inclination of tesh ecell, cut-in tenperature of

; re rigerator, flow rate of coolant, chart speed and ambient
temperaturesas close as bossible to each other were tested
for the reproducibility of the data, It_was_estimated that . ' 1

experimental errors due to thermocouples, chart reading,

and ambient temperature would cause as much as 4£0.83_ 0K .

error in the experimental data, Thus, the-mean of the differ- "

ences of” the temperatures recorded. by the same thermocouple i
\ | in both experimental runs were estimated with a 99% Leveds

; of confidence.

First of all the temperatures were plotted on the

P ey

same temperature~versug-time graph. Then,17 points were

selected on the time axis.and the temperatures of the two

T

runs were read off. The difference of the temperatures

- ——a

was obtained for each of the seventeen points, Thus, a

‘ sample mean of “the differences and a sample standard devia-

tion were calculated., A confidence interval was caleculated
at the 99% level of confidence, If the confidence interval '
fell within 20,83 0K, the data were accepted as reproducible,

These calculations were performed for each of the 24 thermo-

¢ I+5
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couples for a gliven palir of experimental runs under test,. .
FPig. 7 gives sannle graphs for testing reproducibility of
data for experimental Runs 9 and 10.

Let eibe the difference between temperatures recorded
by the same.thermocouple between a pair of experimental
runs under identical conditions at a point i in time and
let @ be the mean of a sémple of size n of such differences,
Then the true mean m_ of the differences, at 99% level of

e
confidence, lies in the interval

¢ - tsAR < mg < _§ + ts/vh inclusive (44)

where s is the standard deviation of the sample of size n,
and t is calculated 1'rom tne Student t-distribution at the —
upper 0,35 tail,
I'or our system, ;0.005, 17 = 2,921, and n = 17,
n n
n ye? - (3 e)?
i =1 i

s = i=1

. (45)
nin - 1)

Thus, the confidence interval is
€ =~ 2.921s/17 < mg € & +.2,9215/417. (46)

This interval nust lie within the limits of experimental

error before a pair of runs may be accepted as being repro-

ducible, The test for reproducibility of data was performed

- -
- \ 4
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for all 8 pairs of runs and for each thermocouple, Table 5

shows a sample test result for experimental Runs 9 and 10,

Table 5: DREP2ODYUCIBILITY TEST BETWERN RUN 9 AND RUN 10

The decision. "accept" means that results are repro-
ducible, The confidence interval must lie within
0.53 OK for the results to be accepted as reproducible,
Level of confidence = 994,

Thermocouple € ©K s CK Confldence,  Decision
Nunber Interval K T
1 0.033 0,092 -0.033, 0.098 accept
2 0.065 0,251 -0.112, 0,243 accept
3 0,278 0,278 0.081, 0.474  accept
4 0.033 0.092 -0.033, 0.098 accept
5 0.040 0. 407 ~0.247, 0.328 accept
6 0.251 0,334 0.014, 0,488 accept ‘-
7 0.069  0.209 -0.079, 0.217 accent '
8 00053 00458 -00271 ,_Oo 37? accept ‘
\ 9 0.125 0.131 0.033, 0.217 acecept ol
10 0.152 0.316 -0.072, 0,376 accept , 1
11 0.180 0.239 0,001, 0.349 accept
12 - 0.243 0.250 0,066, 0,420 accept
13 0.176 0.154 0.067, 0,285 accept
14 0.229 0.202 0.086, 0,372 accept.
15 0.114 00167 -00004, _00232 - a.ccept ’
16 0.051 0.117 ~0,032, 0,134 accept
p 0.090 0.343 -0,153, 0.333 accept
18 0.233  0.244 0.065, 0.411 accept.
' 19 00066 00288 -00139, 00270 accept
20 0.040 0.173 -0.,0E3, 0,163 accept
21 0.033 0.280 0,082, 0.231 accept
22 0,131 0.210 -0.,018, 0,279 accept
23 0.049 0,293 0.158, 0.256 accept
2L 0.107 0.185 0.024, 0,238 accept

Table 6 1lists all 16 experimental runs in pairs according

to reproducible pairs,

|3
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Lable o  EFAPSRINENTAL PUNS LISTED IN REPRODUCIBLE PAIRS

First values of temperature correspond to experimen-~

tal runc showm first in the first column,

Runs a0 T, oK Cold plate steady
temperature, %K - T
1y 2 0% 300,75 300.7 270,43 2704
3; 4 00 - 300.1; 300.4 269.8; 269,8
5: 6 150 298.7; 298,7 270,43 270.4
9; 10 300 301,2; 301.5 269.8; 269,8
11; 12 450 300.1; 300,1 269,8; 269.8
133 14 4350 301.5; 301.5 269,83 269,.8
15; 16 600 301.5; 301.5 270443 270.4

Presentation of Experimental and Theoretical Data

The experimental data_for all the 16.exporimental
runs are presented in Appendix A. Figures (8) to (18) show
comparisons.of experimental and theoretical data. The
experimental runs were performed under conditions listed
in.Table 6., Figures (8) and (9) were obtained for experi-
mental runs with the cell sitting on a horizontal plane.
Remarkably good agreement was obtained between the experi--
mental data and theoretical conduction data, thus indicating
that when the cell was sitting on a horizontal plane, heat
transfer was by conduction with negligible convection,

Obviously, a convection model could not predict the results

of Figures (8) and (9). The data have been presented accord-

ing to distance y from the cooled bottom plate, The data
from the experimental runs at angle 0° (horizontal) indi-

cated that temperatures were functions of time and distance,
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Y,_from the cooled plate, vt not of horizontal distance X,
as'would be expected from a conduction model with our glven
boundary conditions.

Flgures (10) to (18) present results obtained with
the test cell inclined at different angles from the horizontal,
starting with a 150 angle, A study of the experimental points
on these graphs reveals ﬁhe presence and importance- of con-
vective heat transfer, Now, vhe temperature profiles become
functions of horizontal distance x. Here, again, as in
Figures (8) and (9), the temperature graphs have been arranged
according to vertical distance y from the cold plate. At._a
given vertical distance y, the maximum and minimum tempera-
tures along a horizontal direction, x, have been plotted on
the same graph., Other thermocouples with in-between temper-
atures have been plotted singly. Thus, the separation.of
temperatures caused by convection along a horizontal direction
was revealed in each case,

The general effect of convective heat transfer would .
appear to be increased heat-transfer rate, resulting in lower
temperatures throughout the cell and faster freezing rate
than would be obtained with conduction heat transfer only,
Also, convection changed the shape of the interface from
being flat to a curved shape (Fig. 13)« liore fieezing occurred
near the pivot x = 0 of angle of inclination than near X =W,

The effect of increasing angle was to increase the
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cooling-down of that part of the cell to the right of the
plane x = Y/2, The greater the angle of inclination, the
more the cell is cooled down below pure conduction tempera-
ture profile. It would seem that after certain temperature
gradients were achieved, the cooling rate was greatly re-
duced. The magnitude of maximum deviction of temperature
along a horizontal direction at a given height, y, from the _
cold plate was observed experimentally to depend more-on the
temperature difference between initial temperature Ta and
solidification temperature, Trse Rough estimates of this
difference were found to be approximately %(Ta - Tp) irre-
spective of the angle of inclination. However, the rate of
attainment of such maximum differences differed with angles
and could not be estimated.

Figures (10)..to (18) show trends in temperature pro-
files as solidification with convection progressed., The
theoretical curves could not be brought to match closer
with the experimental curves, because stability limitations
from the finite difference approximations of the temperature
equations would not allow us to use the maximum possible
velocities from the velocity profiles.

If velocities could be increased without violating
the stability criteria of the finite difference solutions,
then 1t is felt that it would be possible to reach the proper

maximum velocity wvher the theoretical and experimental curves
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vould be .1y close to each other., At such a time one could
calculate cmpirically the maximun velocities for the system
as functions of angle a. With the true maxinum velocities
knovn, one could then find the proper value_of (T - T)
involved in the gravity approximations in the velocity
profiles,

Rough estimates of‘fractions of maximum velocities
that we actually used were obtained as follows. At the
start of convection, a critical Rayleigh number was assumed
based on values available in the literature, From the
critical Rayleigh number,AT0 at the start of convection was
computed and used in Equatiowi: (28) to carculate the maximum
velocity component LR (umax:’v .)e Then, ratios of the

max

actual U used and this computed u* were..obtained for

max
different angles, .The ratios were then the fractions of

initial maximum velocity (or in other words, gravity levels)
that we could attain a®t the very start of convection. Equa-
tion (47) gives the relationship for the valocity ratios or.

gravity level Q:

Q = 0.95 (2\; /ax)/B,, = 45'6ho/Rad%x sin ¢ —  _—(47)
where Racr= critical Rayleigh number

= - 8endaney, / ( APTL)

and ho= height of liquid in test cell at the start of
convection.
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A half of the height of the liquid phase at the start of
convection was used because the temperature gradient was
still confined to y< h/2. The factor 0.95 appeared in
Equation (47) because we used 95% of the maximum velocity
allowed by stabllity requirements of the finite difference
solution,

Table 7 showus gravify levels (fractions of maximum
velocity obtained) against magnitudes of angle of inclina-
tion &. It shows that, as the angle of inclination in-
Creased, our stability- allowable maximun velocity became
a smaller fraction of the maximum velozity predicted by
Equation (28) at the start ofconvectiin, As solidification
progressed, the velocity in the system could approach the
actual maximum velocity that we used and could also.become
smaller than that. It must be emphasized that the.gravity

levels in Table 7 correspond to the start of convection only,

Table 7: GRAVITY LEVELS AT START OF CONVECTION, (Q)

AX = 0,127 cm, Racr = 3,500

oy &ctually used = 1.9AL/.Ax = 13,92 X 10~3 cm/sec
A = 94306 X 10~% cm2/see

_ao Gravity Level, Q

150 0.68
300 0.39
L50 0.28
60° 0.23

.
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FIGURE 10 (coutd), RUN 6: a = 159 ; Ta = 208,72 OK
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FIGUAR 10 (eontd). RUM 6: a = 15° ; 1, = 298,72 Of
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FIGURE 10 (eontd), RUN 6: o = 159 ; Ty = 298,72 9K
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FIGURE 10 (eontd). RUN 6: « = 15° ; 1, = 298,72 K
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(contd) . RUK 6: a = 159 ; T4 = 208,72 Ok
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PIGIRE 12, EEICHT OI' SCLID PHASE ATl a = 150
4 } -l ! Il \
»(cn) Zunt, Convection (theo,)
2,54 =203 [ - - i
~ b8 ® 2 @—.—.—
g 8,13 A —_— — ¢ —
Q
> _ -
~ 2,032 |- -~ 7
- — Conduction(theo.) _ - S
= for all x's, - T . gt
%
= 1,524
a%
o
5]
1,016 |
[
0.508 | -
12 24 36 48 6d 72
TIME (100 SEC) e e e e e
FIGURE 13, INTERFACE SHAPE AT t = 7200 SEC (THEORETICAL)
. 3.81 . . , . . , ,
=)
o
2,54
£ =~ — ~_convection
§ I — P~ SN- ON. SR
§§ 1.27 F conduction
i
o
/2] Ll ¥ 1 ] 14 T T
254 5,08 7.62 10,16

DISTAIICE PARALLEL TO COLD PLATE (x cm)




FIGURL 1k,

67

EAPERTLITAL AUD THEORETICAL DATA FOR RUN 7:
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FICURE.14 (contd). RUT 7: a = 60° ; my = 298,72 OK
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PIGULRE A4 (contd). RUN 7: a = 6o° ; Wa = 298,72 OF
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FIGURE 14 (contd), RIIL 7: a = 60° ; 7, = 298,72 %K
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FIOURS 14
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PIGURE A4 (contd). RBIUE 7: a = S0° T = 296,72 %K
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FIGURE 15  FYPERTHEATALAND WHICNLECICAL DATA OR kUl 9y
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PIGURE 15 (contd). RUN 9: a = 30° ; T, = 301.22 °K
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FIGIRE 15 (contd). RUN.9: a = 30° ; T, = 301.22 % .
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PICURE 15 (contd), RUN 9: « = 30° ; 1, = 301.22 %k
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PIGURE 15 (eontd). RUW 9: a = 30° ; 2, = 301.22 %
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PICURE 15 (contd). BN 9: a = 30° ; T5 = 301.22 %K
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EYPENINELNTAL AD THEORKTICAL DATA FOR RUN 11:
a = 45° : ta = 300,11 °K
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FIGUAE 16 (contd)..RUI 11: a = 45° ; my = 300,11%
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FIGURE 16 (contd), *Ur 11: ~ = 45° ; 1, = 300,11 %k
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FIGURE 16 (econtd). 7UN 11: a = 45% ., ¢ = 300. 11
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FIGURK 17. EXPERIMENTAL AND THEORETICAL DATA FOR RUN 14:
a = 45% 5 Py o= 301,49 YK
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FIGURE 17 (contd). RUN 14: a = 45° ; 1, = 301,49 %k
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FIGURE 17 (contd). RUN 14: a = 45° ; o, = 301,49 %K
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EIGURE 17 (contd). RUN 14: a=45° ; 1, = 301.49 Ok
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FIGURE 18, EXPERIIENTAL AND THEOR%TICAL DATA FOR RUN 15:

@) (a) Temperature of cold plate (y=0),
00 = (cm) Thermoc. Expt. Conduction (theo,)
2454 -1 )
8.13 4 © _
295 | -
<)
29_0-—» —
®
=
© 285 -
3
-
-280 -
3
3
275 -
12 24 36 48 60.......72
TIME (100 SEC)
305 1 (b) Temperature at y=1.02 cm for x=2.03 cm .
and x=8.13 cm
(¢ x(cm) Thermoc. Expt. Convect (theo.)
300 2.03 14 -

TEMPERATURE, °K
N
\O
O

o = 600 ; Ty = 301,49 °K

8.13 17 @ — e § m——

Conduction (theo,) for
all pts,

12 2l 16 48 60 72




92
FIGURE 18 (contd). RUN 15: a=60° ; Ty = 301.49 %k
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FIGURE 18 (contd). RUN 15: a = 60° ; o
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FIGURE 18 (contd). RUN 15: a = 60° ; T, = 301.49 %
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FIGURE 10 (contd). RUN 15: a« = 60° ; T, = 301.49 %
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CONCLUSTIONS AND RECONMENDATIONS

The following conclusions were dravm from this study:

1. Vher. the test cell was sitting on the horizontal
plane with angle a =-0°, the heat transfer mode was by
conduction, not coavection.

2. Good agreementlwas obtained between the pure-
conduction model and the experimental runs made at a = QO°,

3. When conduction was the_heat transfer mode, the
shape of the solidification interface was planar, not_curved.
For all horizontal x~- positions the solid-phase height was
the same,

4., The temperature during conduction solidification
was strongly a function of time and distance y from the
cooled bottom plate. It had no strong dependence on the
horizontal x~direction when the containing side walls acted
as insulators., It was found that one-dimensional transient
conduction model in the y-direction predicted the phase
change as well as did transient two-dimensional model that.
included the x-direction. This finding supports the find-
ings in a previous transient one-dimensional conduction
phase change study made by these investigators (Reference 13),

5. In snlidification by conduction, in which the side

walls approximate insulators, the extra minor accuracy obe

tained by using a transient two-dimensional model was not




worth the large difforential in cost in computer time from
a one-dimensional transient golution, A uni-dimensional
transient solution would do as well and gtill save computer
tinme,

6. The phase-change_process was the controlling
process. UWhether the heat transfer mode was by conduction
or convection, the actual values of Phase-change enthalpy
change, soiridification temperature, density, specific heat | C

} and thermal conductivity at the interface seemed to control

the accuracy of prediction of experimental data by theoretical

4 models, MNore accurate values must be found for these proper-

| ties at the interface where. some of them experience disconti-

—

. nuities and sudden jumps. In the theoretical calculations,

the interface was found to act as a pseudo-insulator between

the two phases present._

7. With the container of the test material inclined : ‘
at an angle, we found that convective effects became impor-
tant.

8. Convection increased the heat transfer rate and

- caused a faster overall cooling of the test cell and its
| contents. Two indications of the magnitude of convective
effects in the cell were how much below the conduction tenp-
erature the cell had been cooled at any given time, and the

shape of the solidification interface. 'ith convection

present, and cooling occurring from below, the interface
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became shaped slipghtly like an elongated S-curve with the
up branch near the vertical wall passing through the origin
of the angle of pivot, the flat (or inflexion) part near the
half-way mark between the two side walls. The shortest
height of 50lid occurred near the far side wall.

9. We could not get a complete solution of the full
velocity equation by finite difference methods because of
stability restrictions imposed by the solution procedure,
Approximate velocity profiles were substituted into the
temperature equation. The profiles involved a single cir-
culation flow symmetric in the vertical y-direction but
off-centered in the horizontal x-direction,

10, Convection caused the temperature profile to
depend strongly on both horizontal and vertical directions
(unlike conduction) even when the side walls were insulated.
The maximum deviation in temperature. between two points in
the same horizontal plane at a given vertical distance from.
the cold plate seemed to depend more strongly on the temper-
ature difference between the ambient and the freezing interface
than on the angle of inclination. The angle of ineclination,
however, had significant effect on the overall heat transfer
process,

11, Solld-solid phase transition may take place during
solidification and the physical properties of the system

should be modified to account for this,
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12, The theoretical caleculations used in this study
to investigate natural co.uvection are first approximations
and clearly delinecate the trend and significance of convec-
tion., With the avallability of a mueh faster computer with
& much larger memory bank than the computer. available to us,
one may {inally use small enough time steps and space incre-
ments that would yield velocities higher or equal to those
predicted analytically and still stay in the stable reginme
of finite difference solutions. In such a case, one_could
estimate more accurately the shape ang magnitude._ of the

velocities and come up with better gravity level approxi-

mations in the voloeity equations,

13, Many theoretical methods used in the literature
could not stand up to the test in predicting actual experi-
mental data. These theoretical soluticns were obtained
under certain conditions aad with physical properties that
could not.be duplicated casily in the laboratory,

14, .Perhaps, a better approach to phase-change
thermal control would be to use polymers that undergo solid-

solid transition with high enthalpy change., Thus, the phasem

change material could stay solid or amorphous within the
range of lts temperature of operation, Thus, better packag-
ing would result. Materials that melt or sclidify are more
difficult to pPackage in the liquid Phase and more difficult

to predict as to performance because of convective and other

Y
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effects,

15, Another approach to the thermal control problem
with materials that go from liquids to solids and vice versa
would be to come up with empirical effective thermal proper-
ties that incorporate convective and conduction heat transfer
with phase change. For instance, such a procedure could
take into consideration.éntrapped air pockets and voids in
the solid phase, and heat transfer coefficients due to con-
vection in the liquid phase.

We conclude that, with cooling occurring from below,

gravity-induced convection is important in the solidification

of n-hexadecane when the cooling is not oriented perpendicular

to the direction of gravity, Heat transfer rate_is, in

general, increased,
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Text Computer
W AL Width of cell cavity (x direction) -
cm
X XA, XP Abscissae in a Cartesian coordinate
system — cm
g ax DEIX | Finite-difference space increment in
‘ the coordinate-x_direction — cm
| X(x) Function defined by Eq.18 to Eq.22 —
B cm/sec_ o
N4 Y Ordinate in a Cartesian coordinate
system — c¢m
oy DELY Finite-difference space increment in 1
the coordinate-y direction — cnm m
a Angle of inclination of the test cell j
v measured anticlockwise from the hor- S
‘ izontal plane -— degrees '
7 8 Coefficient. in equation of state for
f density: 4 = dLo + BT -—»gm/(cm3-°K)
| Y BB Constant (Eq.23) — cm™t ;
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Subseripts Subindices
i I Identifying number for finite-~diff-

. erence node in the x direction

b J Identifying number for finite-
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Subscripts
E | L S Liquid phase of test material
g ] P Plexiglas, material of walls of test
| cell
|
% o S Solid phase of test material
f Superscript
: ' Implies "evaluated at a new time " o
i (Eq.32 to Eq.34)
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APPENDIX A

The experimental data for the report is given in
the f'ollowing reference:
Ukanwa, A. 0., "Thermal iiodeling of Phase Change Solid-
ification in Thermal Control Devices Including Natural
Convection Effects," Thesis No. Ti422, Colorado School

of lMines, Golden, Colorado, 1971
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APPENDIX B
FORTRAN IV Computer- Program "CONDET,F4!-for solving
either the conduction mcdel or the combined conduction-

convection model of solidification heat transfer.

This. program was actually run on a P.D.P~ 10 digital
computer- via a time-sharing teletype.

Instructions For The Use of "CONDET.F4"-

A, For program execution:

6=INPUT DEVICE 7=0UTPUT DEVICE
B. INPUT DEVICE (O INPUT FILE)

The cold-plate (bottom=plate) temperature is assumed
to be apulynomial in time (%) for 0 £ t< TB, and constant
thereafter at a temperature TC. Follow the following steps
(in order) in reading in the input data: -

1. Consult the section on nomenclature in this text
for terms used in the computer program. Then read in:

2, Line 1 (or card 1): Ambient temperature (or initial
uniform temperature, TA); equilibrium temperature of solid-
ification (TF); final constant cold-plate temperature (TC);
finite-difference time increment (DCLT); space increment in
the x~direction (DELX); space increment in the y=direction

(DELY}; all in that order. Use free-~floating point format of.. .

FORMAT 2.
3¢ Line 2 (or card 2): Time at which cold-plate temp=-
111
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erature becomes constant (TB); time at which program exe-
cution should be terminated (TAU),.Use free-floating point
format (FORMAT 2).

bo Line 3 (or card 3): Degree of polynomial fit of
cold-plate temperature (K); number of finite-difference
nodes, in the x direction (M), in the y direction (N); an
integer (NT) that is negative or zero for conduction-model

solution but positive non-zero for the combined conduction-

convection model solution. Use free-integer format (FORMAT 3)_

5. Line 4 (or card 4): Coefficients (D(I)) of poly-
nomial fit to cold-plate temperasure. (See the section on
nomenclature for the definition of D(I) or- D;). Use free-
fleating point format (FOBMAT 2).

6. Line 5 (or card 5): Liguid-phase thermal conducti-
vity (AK); solid-phase thermal conductivity (SK); liquid-
phase density (ROL); solid-phase density (ROS); liquid~-phase
specific heat (CPL); solid-phase specific heat (CPS); latent
heat of solidification (HF). Use free-floating point format
(FORMAT 2).

7. Line 6 (or card ¢): Properties of material of
the wall of the test cell: thermal conductivity (PK); density
(ROP); specific heat (CPP). Use free-floating point format
(FORMAT 2)

8. Line 7 (or card 7): Initial helght of test-cell
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cavity (AHO); width of test-cell cavity (AL); thickness
of test-cell walls (AHP), Use frec-floeting point format
(FORMAT 2).

A sample input file looks like this:
301.49,290.,6,269.83,1.2,0.254,8,127
6%,0 720&.@_
301, &9 22, &874
6@ J6 2.,00037,0,755,0.833,0.506,0., 505,56,67
%]
8

@8496 1,155, 0.35 -
1,19, 16, sl 27

u@@ !-—'u

Note that the¢ listed input file is for the combined con-
duction-convection model, since NT=3 is positive and non-zero.

' Also, according to this file, the cold-plate temperature is o\
{ linear with time (K=1) wntil t=TB=362,0 when it stays constant i
. at TC=269,83. L

; C. OUTPUT FILE

) This program will print out

1, The time at which a node in the y-direction solid-
i ifies, the node itself and its horizontal location.

2. The temperature profile and the stream function
profile of the entire test cell every 60 time steps. It starts
with the cold plate (J=l), prints out all horizontal (I) values
and then goes to J=2, and so on.

3. Adequate headings are printed to identify what is
being printed out,.

The print-out may be modified from the general format

' given in this program to any desirable format by changing . \
: lines 64 to 78 of CONDET.F4 as needed.
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APPRIIDIY C: OTIER THEOREMICAL CONSIDTRATIONS

If one attempts to solve the vorticity equation
(Eq.11) or the velocity equations (Eq.8) by central-differ-

ence methods, one finds.that the following stability re-
quirements nust be satisfied:

1 - 200t(1/(8%)2 + /(693 S o (C-1)
lu(i; 3l < 20/6x (C-2) !
[v(1,3) < 2v/ay (c-3)

hen the vorticity or the .velocity equations are solved

conjointly with the temperature equation (Eq.5), the con- ,{
ditions of Equation (C-1) to Equation (C=3) must be satis- !
fied conjointly with the conditions of Equation (39) and i
Equations (41). The most restrictive. conditions are used ‘
to evaluate maximum time increment (At) and velocities allowable_______
by stability requirements., 1

For our test material, v->AL; hence, Equation . (C-1)
rather than Equation (39) would determine Ammax? but the
allowable maximun velocities would be determined by Equation
(¥1) rather than by Equation (C-2) or Equation (C=3).

At the first time step, every term except the gravity
term in Equation (11) or Equatious (8} would be 2er0,.. ..

Thus, from Equations (8), the velocities obtained at the
first time step would be: .

ut(1,3) = - P82 ( n(1,5)T ) sin (C=4)
a,

118
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vi(i,3) = - P08 T(1,5)=T ) cos a

—_— (C-5)

AL
The values given by Equations (C-4) and (C~5) must satisfy
the conditions for stability given by Equations (41), (C-2),
and (C-3). But, with experimentally-observed values, the
temperature difference;vT(i,j)-T, is such that the stability
requirements of Equations (41), (C-2), and (C-3) are violated
even for At.= 0,05 sec and Ax = 0,0635 em. It is very hard to
complete stable computer solutions for values smaller than
these. Yet, in order to get skable solutions of the velocity
and the temperature equations at the very first time step,
one needs a time-step size much smaller than 0,05 sec. Even
with such small time steps, it would get more difficult to
satisfy the stability requirements as the velocities would
increase with.subs~quent time steps. This was the Problem
that forced us to use approximate velocity profiles for

our study in stead of solving the complete velocity equa-

tions by finite-dilference methods.




