Thermal Modeling of Phase Change Solidification in Thermal Control Devices Including Natural Convection Effects

CSM-CPR-R372

(NASA-CR-129910) THERMAL MODELING OF PGASE CHANGE SOLIDIFICATION IN THERMAL CONTROL DEVICES INCLIJDING NATURAL A.O. Ukanwa, et al (Colorado School of Mines) Unclas
26 Jan . 1972119 p CSCL 07D
(3) $3100 \quad 16588$

paciace

Tris :onk wo pepared by Colomo School of nines, coldon, Coloredo, whiter Contract $2 \mathrm{AS} 8-30511$, Rod. 2, "Research in Phase Chance Thomal Control Technology" and under Colorado School of !ines Fourdation Contracts T-6911 and F-6915. The work was administered under the arrection of the Space Sciences Laboratory, George C. Rarshall Space flicht Conter, :ith iiss Eombra Richard acting as the contractinc: oficers technioal representative.

This roport covers woms from 21 nov. 1970 to 31 Dec. 1971.

The work at Colorado School of Rines was carried out by A. O. Dikanwa under the direction of F. J. Sternole and J. O. Golden, principle investigators.

ASSMACT

The coal of this investigation was to contribute to the understanding of natural convection effects in phase change themal control devices. This goal was accomplished by developing a mathematical mocel to evaluate naturel conrection effects in a phase change test cell undergoing solidification and then evaluating the model against experimental data. Althouch natural convection effects would be minimized in filght spacecraft, oll phase change devices would be ground tested and thus understanding the effect of natural convection on such devices and the ability to predict ground-based system thermal performance become quite important.

The mathematical approach to the problem was to first develop a transient-two-dinensional conduction heat transfer model for the solidification of a normal paraffin of finite geometry. Next, a transient two-dimensional model was developed for the solidification of the same paraffin by a combined conduction-naturai-convection heat transfer model. Throuchout the study, n-hexaciecane ($n-C_{16} H_{34}$) was used as the phase-change material in both tne theoretical and the experimental work. The models vere basca on the tronsient two-dimensional finite difference solutions of the enerey, continuity, and momentum equations. The convection model
assuncd incompressible flow except as modified in the gravity terms in the eruations of motion.

An experimental systen was set up to verify the theorctical analyses and results. The systen consisted of a closed rectengular box inclined at various angles from the horizontal plane, anc cooled from below. The box was completely filled with n-hexadecane ($n-C_{16} \mathrm{H}_{34}$), a longchain paraffin.

Grevity levels were calculated, depending on the angle of inclination of the test cell. Temporatures in various parts of the cell were recorded by 24 thermonouples as func-. tions of elapsed time from the start of the experiments. Comparisons were made between experimental results and computer-calculated theoretical results.

Heat transfer when the cell was in the horizontal plane was by conduction. Uith the cell inclined at various angles, the heat transfer rate was increased due to combined conduction-convection heat transfer. The cell was generally cooled below the conduction temperatures, when convection was also present. The shape of the phase interface between the liquid and the solid phases was also changed Irom a flat plane to a curved surface oy convection. One half of the test cell was cooled faster than the other half, during convective cooling. Convection was found to be an important parameter in the solidification process.

Pemarkaby coou arseoment was obtained betweon experinental data for soliditication with conduction heat transfer and colculabed rosults fron the theoretical transient twodinensional conduction-hoat-transfor model. Close aereement was also obtained between experimental data for solidification with the test cell inclined at various angles and the theoretical results from the trarsient two-dimensional conduction-natural-convection heat transfer model. The trend of the effect of convection on the system was cleanly revealed by both the experimential and the theoretical results.

Stability proolems uere encountered in the finitedifference solutions of the theoretical heat-transfer nodels. Central differences were used to eliminate the dependence of the finite-difference time step on the unlmom velocity components in the convection equations which would have occurred is forward or backward differences had been used. Kaximum allowable velocities were severely restricted by stability requirements of the finite differences, so that we could not use as hich velocities as we would heve liked to in the solutions of the convection-temperature equations. In addition to these restrictions, more severe restrictions on the magnitude of a time step were imposed by the nced to minimize errors due to nunerical dispersion on the theoretical results \qquad from the natural convection model. Numerical dispersion error terms, introduced by the neglect of second-order time deriv.. atives in the central difference approximations of the boundary layer energy equations, could not be eliminated entirely, but they were minimized to less than 10 percent by the use of very mall time-steps.

This study is a first attenpt to model the effects of natural convection on a solidifying system with moving boundaries. It is also a good basis for further, more rigorous analyses in wich the energy, momentun and continuity equa. tions may be solved completely.
GCums
Pase
LISA CP MAELES viij
LIS': OF PIGURES ix
IMPRODUCIIC: 1
LITERATURE SURVEY 3
THEORETICAL AYALVSIS 10
Formulation of the Problem 10
Approximate Velocity proriles. 17
Finite-Difference Approximations of Govemine remprature Equatjons 25
Calculation of the Phase-Chence Rate and the Eojeht of the Solia Phase 28
Stability Criteria for the Finite- Difiremee Approvinations 30
Error Analysis of the Central Differ- ence i:cthod Used 32
 38
Equipment. 38
Experincntal Focodure 41
COHPARISO: OF EXPETMEMA ASH MHEORTICAL RESULTS 45
Test for the Reproducibility of Experinontal Data 45
Piosentation or Experinental and Theorotical Data. 49
CO:OLUSIO.:S AM: MCOMEDDAMES 97
$\because C . E M C L A D R E$ 102
Fa,
2xannu: Ciwe 106
A上まEMICNS
A. Eucinuontal Data 110
E, porpa: Iv Compten Promra: "CCDEP.P4"
for solvin", wither the Conduction l:odel
or the Con:bined Conduction-Convection
iodel of Solicitication Eeat mransfer 111
C. Other Theoretical Consicionations. 118

ITST OR MABLES

Table Page

1. Time incremonts and velocities allowable by staisility criteria. 32
2. Check for converfence of finite-differ-. encemsolution of the conduction model. 33
3. Mamitude of dispersion coefficients eompared to the themal diffusivity λ_{L} of the liquid.
4. Thernocouple locations in test cell 40
5. Reproducibility test between Runs 9 and 10 48
6. Experimental Runs listed in reproducible pairs. 49
7. Gravity levels at start of convection (Q) 53

IIST OR BIMURES

Firgure Page

1. A section of the test cell with com ordinate system indicated. 12
2. Sketches of streamlines, $\varphi=$ constant. 20
3. Horizontal velocities, $-u^{\prime} / B$, at coup- ling point, $x=1 / 2$. 24
4. Finite-dirfercnce grid and nodal ar- rangement. 24
5. Thermocouple locations in test cell 39
6. Block diagrat of assembly of main experimental equipment. 42
7. Graphical. test for reproducibility of experimental data. 47
8. Experimental and theoretical data for Run 2: $\alpha=0^{\circ} ; T_{a}=300.66^{\circ} \mathrm{K}$ 54
9. Experimental and theoretical data for Run 3: $a=00 ; T_{2}=300.110^{0}$ 57
10. Experimental and theoretical data for Run 6: $\mathrm{c}=15^{\circ}$; $\mathrm{Ta}_{\mathrm{a}}=298.720 \mathrm{~K}$ 60
11. Inttial streamlines in test cell (theo- reticald 65
12. Height of solid at $\alpha=15^{\circ}$ 66
13. Intorface shape at $t=7200$ sec (theoreti- cal) 66
14. Experimental gind theoretical data for
Run 7: $\alpha=60$; $T_{a}=290.720^{\circ}$ 67
15. Experinentel and theoretion data for
$\operatorname{Run} 9: a=30^{\circ} ; \mathrm{T}_{\mathrm{a}}=301.22^{\circ} \mathrm{K}$ 73
16. Experinental mad theoretical data for Run 11: $a=45^{\circ} ; T_{a}=300.11 \mathrm{O}_{\mathrm{K}}$. 79
Figure page
17. Experinental and thcoretical data for Run 14: $a=4.50 ; \mathrm{T}_{\mathrm{a}}=301.49^{\circ} \mathrm{K} . \ldots$. 85
18. Experimental and theoretical data for
Run 15: $\alpha=60^{\circ}$; $\mathrm{Ta}=301.490^{\mathrm{K}}$. 91

INTRODUCTION

Fhase-change phenomena have received wide scientific aticntion for some time and are of significant importance in many technical problems such as solicification of a billet, formation of snow, solidification or an asphalt layer, melting of alloys and growth of crystals. Recentiy, phase-change materials have been seriously considered for spacecraft thermal. control. In concept, such materials would be used in passive systems employing the process of meltinf or solidification to remove or add themal energy from or to a system. Therinal control systems based on solid-liquid phase change have many aòvantages which make them useful for certain applications. They are light, easy to handle, and easily used as wall-lining elements around electronic equipment.

When a phase-change thermal control material goes from the solid to the liquid phase or vice versa, convection currents may be set up in the liquid phase by temporature gradients in the system. These temperature gradients affect the density of the material and hence the force of gravity on it. Thres, the resultant convection is know as gravityinduced or natural convection. It is not a forced convection since no initial buik flow is forced on the system.

The present investifation was aimed at studying tie effect and importance of such natural convection currents on the rate of solidification, temperature profiles and the shape of the interface of a phase-chance materjal, n-heradecane $\left({ }_{n-C}{ }_{16}{ }^{\mathrm{H}} 34\right)$, a normal long-chain paramin that is liquid at normal room temperatures. It was hoped that the investicstion would help reveal any influence of natural convection on the ability of such a phase-change material to control the temperature of an instrument around which it is packacred. If convection increased heat transfer remarkably, a_decision would have to be made as to the suitability of using such a material in the liquid phase for thermal control.

ITTEMTUR SIDYQ

Fuch theoretical work has been presented in the literature dealing with problems which are related to physical chanfe of state. The basic feature of such problems is the existence of a moving boundary or surface between phases. Therefore, the problem that is most often considered is how to determine the way in which this surface or boundary moves. Heat may be liberated_or-absorbed on the boundary; there may be a volume change accorpanying the chance of state, and the thermal properties of the phases on cither siofe of the interface may be different for the phases and may vary as the change of state proceeds. Therefore, the problem is non-linear in nature and ceneral analytical solutions for it are not available. Some exact solutions for models that mathematically approsimate the real problems have been obtained, mostly for infinite or semi-infinite geometry.

Carslaw and Jaeger ${ }^{(1)}$ were among the first to give in-depth treatment of melting and solidification problems. They commented on the need to use numerical and finitedifference methods in solvine many of the complex problems that arise in finite geometric configurations.

Hany of the solutions presented in the literature of phase-change problems are valid only if the material
under stouly is jniticiny at ite oquilibriun tempereture for chance of state. They ifnore the most frequently encountered case in which the material under study is initially at a temperature quite different from the phasechange temperature.

Stefan ${ }^{(2)}$ was the first to give a published discussion of a one-dimensional transient conduction problem uith phase change, for a single component or eutectic composition with constant properties. Thus, the term "Stefan's Problem" cane to be used to describe a one-dimensional conduction problen in which a semi-infinite slab initially at a constant non-zero temperature, has one face maintained at zero temperature for time greater than zero. The solution to the problem entailed the assumption that the time-dependent interface position was proportional to the square root of the product of time ard the thermal diffusivity of the material of the slab.

Danckwerts ${ }^{(3)}$, Booth ${ }^{(4)}$, and Kreith and Romie ${ }^{(5)}$ have all presented analytical or semi-analytical solutions to phase-chence problems under various boundary and initial conditions. Chao and Heiner ${ }^{(6)}$ investigated the temperature in a solid-liquid system while the liquid was being poured. The latent heat of phase chance was treated as a "pseudo"spocific heat and the solution, ootained by a Laplace transform technique was an integral that was solved numerically.

Cany authors used the variational techique to solve hoat tronsfor prohlows, with or without a phase chance. Chambers ${ }^{(7)}$, Eiot and Daughaday (3) used this opproach. Eiot and Davcheday studied an ablation problem in which the melt wes removed as it was formed.

The heatmbalance-integral technique, an analytical method that gives approximate solutions to a wide variety of heat tronsfer problems, is used in many papers. in the literature. It is mostly used to solve non-linear problems that must be solved numerically or approximately. Its big advantage is that it changes an energy equation from a partial differential equetion to an orainary differential equation. One disadvantace of this method is that the sclutions obtained satisfy the differential equations only on the average. Goodman ${ }^{(9)}$ and Poots ${ }^{(10)}$ have used this method to study heat transfer problems. Poots studied the two-dimensional inward. solidification of a uniform prism initially ai the fusion temperature.

In the study of more general cases of phese-change problems, numerical analysis may be the only feasible technique available. Dusinberre ${ }^{(11)}$, Pujado $^{(12)}$, Ukanwa, Stermole and Golden ${ }^{(13)}$ hove all used finite-difference techniques to study phase-chenge problems in mith the heat transfer mode is by conduction only.

Vilier ${ }^{(14)}$ used the "surpius temperature" technique

In an attenpt to inprove the predictions of the phase front. To account for the heat absorbed at the phase front, the calculated temperature was perritted to exceed the actual melting temperature until an arbitrarily sclected tempera-ture was reached. When this temperature was reached, the grid element containing this particular nodal point was considered to have changed phase, and the phase front was shifted to the next node.

Ehrlich ${ }^{(15)}$ gave the implicit finite-difference equations for the one-dimensional melting problem with a variable heat input specified as a function of time. The implicit equations were then put into tridiagonal matrix forms for easy solution by Gauss elimination and by backsubstitution. Special modified equations were given for nodes near the freezing front.

The Northrop Corporation reports $(16,17)$ presented a survey of the phase-chenge problems involving selection of the proper compounds for phasewchange thermal control devices, evaluation of properties, and experimental study of different test cells. Some of the physical properties used in the present study on n-hexadecane havo been taken from these reports.

Other works on phase-chance phenomena include Bannister and Bentjila (18), Grodzka and Fan (19), and Chambre ${ }^{(20)}$. A survey of many papers on phase-change phenomena has been
presented by huehlbauer and Sunderland. (21)
convection in enclosed fluids has been studied exten-sively. Unfortunately, most of the studies have been either only experimental with no attempt at theoretical modeling. or only theoretical with no experimental corroboration. In addition, the majority of the studies on convection deal with flat or parallel plates and on gases. The works that do deal with complotely enclosed liquids of ten have theoretical solutions that hardly, if ever, approximate real situations closely.

Some good texts for theoretical references on heat transfer and fluid flow are Rohsenow and Choi (22), Schlichting(23), Longwell ${ }^{(24)}$, and Eird, Stewart and Lightfoot ${ }^{(25)}$. The last two references were used as the references for developing the basic boundary-layer equations for gravity-induced convection in the present study.

Wilkes and Churchill ${ }^{(26)}$ studied tempernture profiles in an enclosed rectangular cavity subject to adverse temperature gradients. Their equations for gravity-induced free convection were developed from the basic equations of continuity, motion and energy. The resultant system of equations was solved by an irplicit alternating-direction technique developed by Peaceman and Rachford. (27)

Chandrasekhar (28) gave an extensive treatment of stability and instability in fluids subject to adverse
temperature, eravity and mannetic offects. -the method used by Pellew and Solithwil (29) to linearize temperature and velocity equations was also discussed. It involved-the solution by the separation-of-variables technique, the equations of continuity, momentum and energy in order to determine the critical payleigh number (gh ${ }^{3} \alpha_{\nu} / \lambda_{L} \nu \bar{\alpha}_{L}$) necessary to initiate free convection in a filuid heated from pelow. The method assuned that motion in fluids heated from below was cellular and involved finite numpers of rolls corresponding to paiticular wave numbers.

Leont'ev and Kirdyesnkin(30) studiea convection in fluids oi large volunes. iney assumed that, except in the boundary layer which was very small relative to the dimensions of the fluir, motion was by ideal flow. However, the maximum velocity occurred in the boundary layer, near the walls, where the temperature gradient or heat flux was largest. This ideal-flow approximationfor natural convection in completely enclosed fluids has been used by other authors.. The velocity profiles used in the present study assuned ideal flow profiles similar to their models. This approach was necessitated by the difficulty in satisfying all no-silp conditions on rizid boundaries of completely enclosed fluids.

Bain ${ }^{(31)}$ perforned a tro-dimensional experimental study of gravity-induced convection in an enclosed liquid
in a rectangular cavity inclined at an angle from the horizontal plane. Solid-liquid phase change was also involved. Personal commuication with Mr. Bain has revealed that he is presently involved in providing theoretical ideal-flow models to predict his experimental data,

THEORETICAJ ANALYSIS

Formulation of the Problem

The physical problem to be studied is the solidification of normal hexadecane enclosed in a cell cavity of height h (initial height h_{0}) and constant square cross sectional area of lateral dimension W. The cell is inclined at angle α degrees measured from the horizontal plane. The coordinate axes and their origin are located as shown in Figure 1 with x ajong the cold bottom plate and y perpendicular to $1 t$.

Some physical properties of the test material, n hexadecane $\left(n-C_{16}{ }^{H} 34\right)$, were taken from Reference 17: Density

Solid n-hexadecane: $d_{S}=1.0772-8.41 \times 10^{-4} \mathrm{~T} \mathrm{gm} / \mathrm{cm}^{3}$
for $T \leq 290.0^{\circ} \mathrm{K}$
Liquid n-hexadecane: $d_{L}=0.9726-6.813 \times 10^{-4} \mathrm{~T} \mathrm{gm} / \mathrm{cm}^{3}$
for $290.0^{\circ} \mathrm{K} \leq T \leq 400.0^{\circ} \mathrm{K}$
Specific Heat
Solid n-hexadeane: $c_{\mathrm{pS}}=0.505 \mathrm{cal} /\left(\mathrm{gm}-{ }^{\circ} \mathrm{K}\right)$
for $T \leq 290.0^{\circ} \mathrm{K}$
Iiquid n-hexadecane: $c_{p L}=0.1626+1.164 \times 10^{-3} \mathrm{~T} \mathrm{cal} /\left(\mathrm{gm}-\mathrm{o}_{\mathrm{K}}\right)$ for $290.0^{\circ} \mathrm{K} \leq T \leq 480.0^{\circ} \mathrm{K}$
Thermal Conductivity

$$
\text { Solic: } K_{S}=2.390 \times 10^{-3}-3.047 \times 10^{-6} \mathrm{~T} \text { watt } /\left(\text { cnn- }{ }^{\circ} \mathrm{K}\right)
$$

FIGURE 1. A SECTION OF THE TES' CELL WITH COORDINATE

Iiquid: $k_{L}=2.390 \times 10^{-3}-3.047 \times 10^{-6} \mathrm{~T}$ watt $/\left(\mathrm{cm}-{ }^{\circ} \mathrm{K}\right)$ for $250^{\circ} \mathrm{K} \leq T \leq 425^{\circ} \mathrm{K}$
Solidification temperature: $T_{\mathrm{A}}=290.0^{\circ} \mathrm{K}=16.7^{\circ} \mathrm{C}$ Latent heat of solidification: $H_{f}=56.67 \mathrm{cal} / \mathrm{gm}$

The cold bottom plate is maintained at temperature, $T(x, 0, t)=f(t)$. The effects of natural convection, induced by Ciensity aind temperature changes, on the solidification rate and the temperature profiles of the paraffin are to be studied as functions of time and angle (equivalent to changing gravity levels). By changing angle α, one may vary the components of the force of gravity acting on the system. Only density changes affecting the gravity term in the equations of motion are considered.

For this investigation, temperature-averaged properties are used. The following properties, obtained by experiment and from References 37,32 and 33 are used:

$$
\begin{aligned}
\mathrm{T}_{\mathrm{f}} & =290.66^{\circ} \mathrm{K} \text { (experiment) } \\
\mathrm{d}_{\mathrm{S}} & =0.833 \mathrm{gm} / \mathrm{cm}^{3} \text { (experiment at } 268.2^{\circ} \mathrm{K} \text {) } \\
\mathrm{d}_{\mathrm{L}} & =0.755 \mathrm{gm} / \mathrm{cm}^{3} \text { (experiment at } 294.7^{\circ} \mathrm{K} \text {) } \\
\mathrm{d}_{\mathrm{P}} & =\text { density of plexiclas (material of cell wall) } \\
& =1.155 \mathrm{~cm} / \mathrm{cm}^{3} \text { (experiment at } 298^{\circ} \mathrm{K} \text {) }
\end{aligned}
$$

From Reference 17:

$$
\begin{aligned}
& \beta=-6.813 \times 10^{-4} \mathrm{~mm} /\left(\mathrm{cm}^{3}-O_{K}\right) \text { (from } \alpha_{L}=\alpha_{L O}+\beta T \text {) } \\
& c_{p L}=0.506 \mathrm{cal} /\left(\mathrm{cm}^{\circ} \mathrm{K} \text {) (at } 296.0^{\circ} \mathrm{K}\right. \text {, the average temp- } \\
& \text { erature encountered in the 1iquid phase) }
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{c}_{\mathrm{ps}}=0.505 \mathrm{cal} /\left(\mathrm{gm}-\mathrm{O}_{\mathrm{K}}\right) \\
& \mathrm{k}_{\mathrm{S}}=3.720 \times 10^{-4} \mathrm{cal} /\left(\mathrm{sec}-\mathrm{cm}-\mathrm{o}_{\mathrm{K}}\right) \text { (at } 280.2^{{ }^{\circ} \mathrm{K}, \text { the }}
\end{aligned}
$$ averaçe temperature encountered in the solid phase)

$$
\left.k_{I}=3.555 \times 10^{-4} \mathrm{cal} /\left(\sec -\mathrm{cm}^{\circ} \mathrm{K}\right) \text { (at } 296.0^{\circ} \mathrm{K}\right)
$$

From Reference 32:

$$
\left.\begin{array}{rl}
k_{p}= & p l e x i g l a s ~ t h e r n a l ~ c o n d u c t i v i t y ~
\end{array}=4.960 \times 10^{-4}\right)
$$

From Reference 33:

$$
v=\text { kinematic viscosity of n-hexadecane }=0.04 \mathrm{~cm}^{2} / \mathrm{sec}
$$

Prediction of the rate of solidification and the temperature profile of the test paraffin under a giren set of initial and boundary conditions are to be made using (1) a conduction model and (2) a combined conduction-convection heat-transfer model. The following derinitions are used: For a function $f(x, y, t)$,

$$
\begin{align*}
& \delta f / \delta t=f_{t} ; \delta^{2} f / \delta t^{2}=f_{t t} ; \delta f / \delta x=f_{x} ; \delta^{2} f / \delta x^{2}=f_{x x} \\
& \delta f / \delta y=f_{y} ; \delta^{2} f / \delta y^{2}=f_{y y} ; \delta^{2} f / \delta x \delta y=f_{x y} \tag{1}\\
& D f / D t=f_{t}+u f_{x}+v f_{y} \tag{2}
\end{align*}
$$

With these definitions, we have
(1) Conduction Nodel ; temperature equations:

Liquid phase

$$
\begin{align*}
& T_{t}=\lambda_{L}\left(T_{X X}+T_{y Y}\right) \text { for } Y(x, t)<y \leqslant h_{0} \tag{3}\\
& T(x, Y, t)=T_{f} \tag{i}
\end{align*}
$$

$$
\begin{align*}
& T\left(x, h_{0}+h_{p}, t\right)=T_{a} \tag{ii}\\
& T_{x}(0, y, t)=T_{x}(t, y, t)=0 \tag{iii}\\
& T(x, y, 0)=T_{a} \tag{iv}
\end{align*}
$$

Solid phame

$$
\begin{align*}
& T_{t}=\lambda_{S}\left(T_{x x}+T_{y y}\right) \text { for } 0<y<Y(x, t) \tag{4}\\
& T(x, y, t)=T_{f} \tag{i}\\
& T(x, 0, t)=f(t) \tag{ii}\\
& T_{x}(0, y, t)=T_{x}(W, y, t)=0 \tag{iiii}\\
& T(x, y, 0)=T_{a} \tag{iv}
\end{align*}
$$

In Equations (3) and (4), T_{a} is ambient temperatuce, h_{p} is the thickess of the plexiglas wall of the test cell and $\lambda=k /\left(d c_{p}\right)$ is the thermal diffusivity of the test material. Ho equations of motion are involved in the conduction model.
(2) Combined Conduction-Convection Model

Temperature equations:
Solid phase:- Equations (4) apply.
Liquid phase

$$
\begin{equation*}
D T / D t=\lambda_{I}\left(T_{x x}+T_{y y}\right) \tag{5}
\end{equation*}
$$

Viscous heating is nepligible. The boundary conditions (i) to (iv) of Equation (3) apply here also.

Equation of Continuity:

$$
\begin{equation*}
u_{x}+v_{y}=0 \tag{6}
\end{equation*}
$$

for an incompressible flus. .
Equations of hotion:-
The Navier-Stokes' equations of motion for an incompressible fluid are

$$
\begin{align*}
& a_{L} D u / D t=a_{L} v\left(u_{x x}+u_{y y}\right)-p_{x}-d_{L} g \sin \alpha \tag{7a}\\
& d_{L} D v / D t=a_{L} v\left(v_{x x}+v_{y y}\right)-p_{y}-d_{L} g \cos \alpha \tag{7b}
\end{align*}
$$

Velocity components u and v are each zero at each of the valls, $\mathrm{x}=0, \mathrm{x}=\mathrm{H}, \mathrm{y}=0$, and $\mathrm{y}=\mathrm{h}_{0}$. At time $\mathrm{t}=0$, velocities are also equal to zero.

The temperature equations for both liquid and solid phases are couplea by an interface equation for phase change involving enthalpy change during solidification. This is true for both models: conduction and combined conductionconvection models. The proper phase-change equation will be discussed later.

Equations (7) may be modified as follows. Let $\mathrm{P}=\overline{\mathrm{P}}+\mathrm{p}$, where $\overline{\mathrm{P}}$ is the value of the pressure in the test cell when there is no motion. Also; \bar{T} and $\bar{\alpha}_{L}$ are the values of temperature and the density of the test material (iiquid) when there is no motion. When there is no motion, Equations (7) become

$$
\begin{align*}
& 0=-\bar{F}_{x}-\bar{\partial}_{L} C \sin \alpha \\
& 0=-\bar{P}_{y}-\bar{d}_{L} Z \cos \alpha \tag{76}
\end{align*}
$$

When Equation (7 'a) is subtracted from Equation (7 a), and
(71b) from (7b), the following modified cquations are obtained for gravity-induced natural convection as a rosult of temperature-caused density variations in the test material.

$$
\begin{align*}
& \left.D u / D t=v\left(u_{x x}+u_{y y}\right)-p_{x} / \bar{\alpha}_{L}-\frac{\beta_{G}(T)}{\bar{\alpha}_{L}} \bar{T}\right) \sin \alpha \tag{8a}\\
& D v / D t=v\left(v_{x x}+v_{y y}\right)-p_{y} / \bar{\alpha}_{L}-\frac{\hat{\sigma}_{G}(T-T)}{\bar{\alpha}_{L}} \cos \alpha \tag{8b}
\end{align*}
$$

where $\beta(T-\bar{T})=\bar{d}_{L}-\bar{a}_{L}$. Equations (δ) include the effect of the ancle of inclination of the test cell from the horizontal plane. Thus the nomal gravity level is modified by the angle, α.

Equations (8) may be further modified as followss Let a stream function, $\varphi(x, y, t)$, be defined by the two equations

$$
\begin{align*}
u & =-\varphi_{y} \tag{9a}\\
v & =\varphi_{\mathrm{x}} \tag{9b}
\end{align*}
$$

Thus, Equations (9) automatically satisfy the continuity equation (6). Define a vorticity, $\omega(x, y, t)$, by the two identical equations

$$
\begin{align*}
& \omega=v_{x}-u_{y} \tag{10a}\\
& \omega=\varphi_{x x}+\varphi_{y y} \tag{10b}
\end{align*}
$$

Difforentiate Equation ($8 b$) with respect to x and Equation (8a) with respect to y, and subtract the result of the later operation from the result of the former. The resultant
equation becomes, on the application of Equation (6) and Equation (10):

$$
\begin{equation*}
D(1) / D t=r\left(()_{x x}+\omega_{y y}\right)+\frac{\beta E}{\bar{\alpha}_{L}}\left(\left(I^{\prime}-\bar{T}\right)_{y} \sin \alpha-(I-\bar{T})_{x} \cos \alpha\right) \tag{21}
\end{equation*}
$$

Thus, Equation (2I) replaces-Equations. (8) as the equation of motion. The pressuxe terms drop out of the equations.

As is shorm in Appendix C, limitations imposed by . stability criterja for stable solutions by finite-difference approximations of Equations (5) and (11) or (5) and (8) simultaneously could not be satisfied within the limitations of digital-computer time and memory available to us. In order to get meaningiul results from these full equations of notion and temperature, one would have to use very small time and space grid elements, values that are too small to allow for the acquisition of meaningful theoretical data within. the time and memory limitations permitted to these investigators by the university computer center. -

Therefore, the approach to be used to obtain approximate solutions of Equations (5) and (8) is to use approximate velocity profiles obtaincd by combining an ideal-flow model with a viscousiflon model.

Approximate Volccity Profiles

Assume that $(T-T)_{x}$ is negligible, compared to $(1-\bar{T})_{Y}$.
(a) Ideal-flow Model (Kaintained Convection)

Let $T=T=c u(x, y, t)$ where c is a constant, and let $\omega=-q q^{\varphi}(x, y, t)$ where q is a charactoristic constant. Also, assume that $\varphi(z, y, t)$ is separable into a product of functions of x, y and t. From Equation (11), we get

$$
\begin{equation*}
\varphi_{t-}=v\left(\varphi_{y x}+\varphi_{y y}\right)+\frac{\beta \delta c}{q \bar{a}_{I}} \varphi_{y y} \sin \alpha \tag{12}
\end{equation*}
$$

with initial and_boundary conditions,

$$
\begin{equation*}
\varphi(0, y, t)=\varphi(H, y, t)=\varphi(x, 0, t)=\varphi(x, h, t) . \tag{13}
\end{equation*}
$$

When Equation-(12) is solved-by the separation-of-variables method, we get

$$
\begin{align*}
& \varphi_{n, m}=A_{n, m} \sin \frac{(2 n+1) \pi x}{V} \sin \frac{(2 m+1) \pi y}{n} e^{m \cdot t\left(q+\frac{\pi^{2}(2 m+1)^{2} \beta g c}{q \bar{d}_{L} L h^{2}}\right)} \tag{14}\\
& =\pi^{2}\left(\frac{(2 n+1)^{2}}{w^{2}}+\frac{(2 m+1)^{2}}{n^{2}}\right), m=0,1,2, \ldots ; n=0,1,2, \ldots
\end{align*}
$$

For maintained motion (independent of time), the exponer.t In the exponential term is zero, that is

$$
\begin{equation*}
c=-\frac{\bar{a}_{L} v q^{2} h^{2}}{\pi^{2}(2 m+1)^{2} \beta g} \tag{15}
\end{equation*}
$$

When Equation (15) is put intc Equation (14), we get

$$
\begin{align*}
& \varphi_{n, m}= \Lambda_{n, m} \sin \frac{(2 n+1) \pi x}{W} \sin \frac{(2 m+1) \pi y}{h} \tag{16}\\
& m=0,1,2, \ldots \ldots ; n=0,1,2, \ldots \ldots
\end{align*}
$$

Equation (16) is analogous to the equation for the vibrations of a strine in which q (Equation 14) Gives the characteristic numbers corrosponding to the modes. If $n=m=0$, we
cot a sincle circulation flow (onc finite roll) in the test cell. If eithor n or n or both are mot equal to zero, multiple rollsmosult. Pigure 2 shows slictches of the rolls that would result for various valves of m and n.
(b) Viscous-rlow liodel (Firct-orcer Kontorovich profile approximation by vartational metrod).

Assume that $T-\bar{T}=J T_{0} / h$, where ΔT_{0} is the temperature difference between the hot plate at $y=h$ and the cold plate at $y=0$. Als, assume a steady-state solution and neglicible pressure variation in Equation (8a). Therefore, Equation (Ba), as modificd, becomes -

$$
\begin{equation*}
u_{x x}+u_{y y}-\frac{\beta G y \Delta T_{0}}{\bar{a}_{L} \nu_{h}} \sin \alpha=0 \tag{1.7}
\end{equation*}
$$

Assume a profile, $\left(\rho=h\left(y / h-2 y^{3} / h^{3}+y^{4} / h^{4}\right) X(x)\right.$ where the profile has been made to satisfy in the y-direction the boundary conditions of Equation (13) for a stream function. From Equations (9a) and (18), we get

$$
\begin{equation*}
u=\left(1-6 y^{2} / h^{2}+4 y^{3} / h^{3}\right) x(x) \tag{19}
\end{equation*}
$$

The function $X(x)$ is to be determined by varjational technique and should satisfy the boundary conditions

$$
\begin{equation*}
x(0)=x(4)=0 \tag{20}
\end{equation*}
$$

The appropriate equation for $X(x)$ by variational method is

(a) $n=n=0$

(b) $m=0, n=1$

(d) $m=1$

obtained by integrating the product of $1-6 y^{2} / h^{2}+4 y^{3} / h^{3}$ and Equation (17) with respect to y between $y=0$ and $y \equiv h$. The definjition of Equation (19) for u is employed in the interration. The resulting equation for $X(x)$ is

$$
\begin{equation*}
d^{2} x / d x^{2}-\left(168 / 17 h^{2}\right) x+\frac{7 \beta \varepsilon \Delta^{T}}{17 \bar{\alpha}_{L}} o^{2} \sin \alpha=0 \tag{21}
\end{equation*}
$$

On solving Equation (21) with the boundary conditions of Equation (20), we get

$$
\begin{equation*}
X=\frac{\left.\beta \operatorname{rrh}^{2}\right\lrcorner T_{0}}{24 v \operatorname{\alpha }_{L}} \sin \alpha^{\left(I-\frac{\sinh \gamma(U-x)+\sinh \gamma x}{\sinh \gamma W}\right)} \tag{22}
\end{equation*}
$$

where $\quad \gamma=\sqrt{(163 / 17)} / \mathrm{h}$
Therefor, the first-order Kantorovich profiles are

$$
\begin{align*}
& u=-B\left(1-6 y^{2} / h^{2}+4 y^{3} / h^{3}\right)\left(1-\frac{\sinh \gamma(W-x)+\sinh \gamma x}{\sinh \gamma W}\right) \tag{24a}\\
& v=\operatorname{Bh}\left(y / h-2 y^{3} / h^{3}+y^{4} / h^{4}\right)\left(\frac{\cosh \gamma(W-x)-\cosh \gamma x}{\sinh \gamma W}\right) \tag{24b}\\
& \varphi=\operatorname{Bh}\left(y / h-2 y^{3} / h^{3}+y^{4} / h^{4}\right)\left(1-\frac{\sinh \gamma(W-x)+\sinh \gamma x}{\sinh \gamma W}\right) \tag{24c}
\end{align*}
$$

where $B^{\prime}=-\beta g^{2} \Delta T_{O}$ sin $a /\left(24 \nu \dot{a}_{L}\right)$.
The stream function of Equation (24c) gives one finite roll (sinflet flow). As it turned out, however, a single symuctric roll could not predict the experimental data in all
sections of the tost cell. It could predict only one half of the test cell ($(<x<i i / 2)$. lultiple rolls given by Equation (16) when at least one of m and n is not zero, do not predict the entire cell performance either.

Hence, a.modified profile involving a combination of Equation (24c) and Equation (16) for. $n=m=0$ was used to get a single roll; non-symmetric in the x-iirection, but symmetric in the y-direction. Equation (16), for $n=m=0$, was allowed to apply for $0 \leq x \leq W^{\prime} / 2$, so that at $x=W 1 / 2$,

$$
\begin{equation*}
v=0 ; \text { and } u=-A_{0}, c \frac{\pi}{h} \cos \frac{\pi}{h} y \tag{25}
\end{equation*}
$$

Equation (25) was obtained by applying Equation (9a) on Equation (16) and letting $x=6 / 2$. W $1 / 2$ must satisfy the relationship $2 h \leq W^{\prime} / 2 \leq W$. The second portion of the stream functicn profile was obtained by using Equation (24c) in the range $W^{1 / 2} \leq x \leq W$. In addition, v from this profile was set equal to zero at $x=W 1 / 2$ so that u for this part became

$$
\begin{equation*}
u=-m\left(1-6 y^{2} / n^{2}+4 y^{3} / h^{3}\right) \text { at } x=w^{1} / 2 \tag{26}
\end{equation*}
$$

Equations (25) and (26) should yield the same values for u at $x=1 / 2$. They both go to a maximum, a minimum and zero at the same points: $y / h=1,0$, $\frac{2}{3}$, respectively. Thus, the maximum value givon by Equation (25) was set equal to the
maximum value given by Equation (26) to get $A_{0, ~}=B h / \pi$. Thus, the complete stream function that was used was

$$
\begin{align*}
& \frac{B h}{\pi} \sin ^{\pi x} \frac{\sin }{\pi} \frac{\pi y}{h} \text { for } 0 \leq x \leq W 1 / 2 \\
& \varphi=\operatorname{En}\left(y / n-2 y^{3} / h^{3}+y^{4} / h^{4}\right)\left(1-\frac{\sinh h(W-x)+\sinh y\left(W+x-W^{1}\right)}{\sinh y(2 W-W I)}\right), \\
& \text { for } W / 2 \leq x \leq W \tag{27}
\end{align*}
$$

Figure 3 shows graphs of u from Equation (25) and u from Equation (26) at the merging of the two portions of the stream function in Equation (27), that is, at $x=W^{1 / 2}$.

For the present study, wi/2 was chosen as 0.95 W . So, the final form of the resultant stream function profile that was used in this study is

$$
\begin{align*}
& \frac{\operatorname{Bh}}{\pi} \sin \frac{\pi x}{1.9 W} \sin \frac{\pi y}{h}, \text { for } 0 \leq x \leq 0.95 w \\
& \operatorname{Bn}\left(y / h-2 y^{3} / h^{3}+y^{4} / h^{4}\right)\left(1-\frac{\sinh \gamma\left(\frac{y-x)}{\sinh }+\sinh \gamma(x-0.9 w\right.}{0.1 y w}\right) \\
& \text { for } 0.95 w \leq x \leq w
\end{align*}
$$

The introduction of the definftions in Equation (9) into Equation (28) gives u and v. Hence, Equation (28) is used in the finite-difference solution of Equation (5) to obtain the convection temperature profiles in the liquid phase. Since the ancile, a; appears only in the term B, Equation (28) indicates that the ancie of inclination, α, affects

FIGURE 4. FINITE--DIFFERENCE GRID AND NODAL ARRANGEMENT

the mannitude of the velocities but not their shape. In Equation (28), h is the time-dependent height of the liquid phase winch becomes smaller than the height h_{0} of the test cell cavity as solidification continues.

Finite-Differonce Approximations of Governing Temperature

Equations

The followins definitions are used. Irnore thirdorder derivatives. Figure 4 explains the space-grid arrange. ment.
Central-difference appro:imations

$$
\begin{align*}
& \frac{T(i+1, j)-T(i-1, j)}{2 \Delta x}=T_{x} \tag{29i}\\
& \frac{T(i, j+1)-T(i, j-1)}{2 \Delta y}=T_{y} \tag{29ii}\\
& \frac{T(i+1, j)-2 T(i, j)+T(i-1, j)}{(\Delta x)^{2}}=T_{x x} \tag{29iii}\\
& \frac{T(i, j+1)-2 T(i, j)+T(i, j-1)}{(\Delta y)^{2}}=T_{y y} \tag{29iv}
\end{align*}
$$

Forward-difforence approximations

$$
\begin{align*}
& \frac{T^{t}(i, j)-T(i, j)}{\Delta t}=T_{t}+\frac{1}{i} \Delta t T_{t t} \tag{29v}\\
& \frac{T(i+1, j)-T(i, j)}{\Delta x}=T_{x}+i \Delta x T_{x x} \tag{29vi}
\end{align*}
$$

$$
\frac{T(i, j+1)-T(i, j)}{\Delta y}=T_{y}+z_{z}^{1} \Delta y T_{y y}
$$

Backward-difference approximations

$$
\begin{align*}
& \frac{T(i, j)-T(i-1, j)}{\Delta x}=T_{x}-\frac{1}{2} \Delta x T_{x x} \tag{22viii}\\
& \frac{T(i, j)-T(i, j-1)}{\Delta y}=T_{y}-\frac{1}{z} \Delta y T_{y y} \tag{29ix}
\end{align*}
$$

Coefficients:

$$
\begin{align*}
& G_{1}=1-2 \lambda \Delta t\left(1 /(\Delta x)^{2}+1 /(\Delta y)^{2}\right) \tag{301}\\
& G_{2}=\lambda \Delta t /(\Delta x)^{2} \\
& G_{3}=\lambda \Delta t /(\Delta y)^{2} \tag{30iii}\\
& C_{1}=2 d_{p} c_{p} h_{p}+d_{L} c_{p I} \Delta y- \tag{30iv}\\
& C_{2}=k_{L} \Delta y+2 k_{p} h_{p} \tag{30v}\\
& G_{4}=1-\frac{2 \Delta t}{C_{1}}\left(C_{2} /(\Delta x)^{2}+k_{I} / \Delta y+k_{p} / h_{p}\right) \\
& G_{5}=\Delta t C_{2} /\left(C_{1}(\Delta x)^{2}\right) \tag{30vii}\\
& G_{6}=2 \Delta t k_{L} / C_{1} \Delta y \tag{30viii}\\
& G_{7}=2 \Delta t k_{p} / C_{1} h_{p} \tag{30ix}\\
& G_{8}=G_{2}+u(i, j) \Delta t / 2 \Delta x \tag{31i}\\
& G_{9}=G_{2}-u(i, j) \Delta t / 2 \Delta x \tag{31ii}\\
& G_{10}=G_{3}+v(i, j) \Delta t / 2 \Delta y \tag{31iii}\\
& G_{11}=G_{3}-v(i, j) \Delta t / 2 \Delta y \tag{31iv}
\end{align*}
$$

On the application of tho central-difference space definitions and the time-forvard-difference definitions to Equations (3), (4) and (5), we get the following sets of equations. Second-order time derivative is ignored.
(1) Conduction Model

Liquid phase

$$
\begin{align*}
T^{\prime}(i, j)= & G_{i L} T(i, j)+G_{2 L}(T(i+1, j)+T(i-1, j))+ \\
& G_{3 I}(T(i, j+1)+T(i, j-1)), \text { for } 2 \leq i \leq M-1 \\
& \text { and } N(i)+1 \leq j \leq N-1 \tag{32i}\\
T^{\prime}(1, j)= & G_{1 L} T(i, j)+2 G_{2 I} T(2, j)+G_{3 L}(T(1, j+1) \\
& +T(1, j-1)), \text { for } N S(1)+1 \leq j \leq N-1 \quad \text { (32ii) } \tag{32ii}\\
T^{\prime}(M, j)= & G_{1 I} T(M, j)+2 G_{2 L} T(M-1, j)+G_{3 L}(T(M, j+1) \\
& +T(M, j-1)), \quad N S(M)+1 \leq j \leq N-1 \quad \text { (32iiii) } \tag{32iii}\\
T^{\prime}(i, N)= & G_{4} T(i, N)+G_{5}(T(i+1, N)+T(i-1, N))+ \\
G_{7} T a & +G_{6} T(i, N-1), \text { for } 2 \leq 1 \leq M-1 \\
T^{\prime}(1, N)= & G_{4} T(1, N)+2 G_{5} T(2, N)+G_{6} T(1, N-1) \\
& +G_{7} T a \\
T^{\prime}(M, N)= & G_{4} T(M, N)+2 G_{5} T(M-1, N)+G_{6} T(M, N-1) \\
& +G_{7} T a \tag{32vi}
\end{align*}
$$

Solid phase

$$
\begin{align*}
T^{\prime}(i, j)= & G_{1 S}(i, j)+G_{2 S}(T(i+1, j)+T(i-1, j)) \\
& +G_{3 S}(T(i \cdot j+1)+T(i, j-1)) \text {, for } \\
& 2 \leq i \leq M-1,2 \leq j \leq \operatorname{NS}(i) \tag{33i}
\end{align*}
$$

$$
\begin{align*}
T^{\prime}(1, j)= & G_{1 S} T(1, j)+2 G_{2 S} T(2, j)+G_{3 S}(T(1, j+1) \\
& +T(1, j-1)), \text { for } 2 \leq j \leq N S(1) \tag{33i.i}\\
T^{\prime}(M, j)= & G_{1 S} T(M, j)+2 G_{2 S} T(M-1, j)+G_{3 S}(T(K, j+1) \\
& +i(M, j-1)), \text { for } 2 \leq j \leq N S(M) \tag{32iii}\\
T^{\prime}(i, 1)= & f(t), \text { for } 1 \leq 1 \leq M \tag{33iv}
\end{align*}
$$

(2) Combined Conduction-Convection Model

Solid phase:- The solid-phase Equations (33i) to (33iv). of the conduction model apply here in their entirety. Liquid phase

$$
\begin{align*}
T^{\prime}(i, j)= & G_{1 I} T(i, j)+G_{8 I} T(i-1, j)+G_{9 L} T(i+1, j)+ \\
& G_{10 L} T(i, j-1)+G_{11 L} T(i, j+1), \text { for } \\
& 2 \leq i \leq M-1, N S(i)+1 \leq j \leq N-1 \tag{341}
\end{align*}
$$

Equations (32ii) to (32 vi) also apply here in their entirety.
In Equation (32) to Equation (34), subscripts I and S on a coerficint imply that the-properties of liquid and solid test material are to be used respectively. Qilculation of the Phase-chanse Rate and the Heimht of the Solid Phase

In Equations (32) to (24). NS(1) is the number of y-nodes in the solid phase given as a function of horizontal location x (that is, $j \Delta x$). Thus, the height of the solid phase at any time t is given by the equation

$$
\begin{equation*}
Y(i, t)=\Delta y(\operatorname{HS}(i)-0.5), \text { for } i \leq \operatorname{mand} \operatorname{ins}(i) \geq 2 \tag{35}
\end{equation*}
$$

If $\operatorname{NS}(i)=1$, then $Y(i, t)$ is on the cold botton platio and is equal to $\Delta y / 2$. NS (i) and $Y(i, i)$ must satisfy, at any time, the folloving inoquations.

$$
\begin{align*}
& 1 \leq N S(i) \leq N, \text { for } 1 \leq i \leq M \tag{36i}\\
& 0 \leq Y(i, t) \leq n ; \text { for } 1 \leq i \leq M \tag{36ii.}
\end{align*}
$$

At any time t, $N S(i)$ is evaluated as follows. Firstily, $T(i, 1, t)=f(t)$ is checked to see if $f(t) \leq T_{f}$. The first time that $f(t) \leq T_{f}$, iTS(i) is set equal to 1 for all $1 \leq i \leq N$ to see if $T\left(i, N S(i)_{o l d}+1\right) \leq T_{f}$. If it is, then a new iNS(i) is obtained from the equation NS(i)=NS(i) old +1 for-that particular i, and thenceforth, that node is \therefore treated as a node in the solid phase.

The latent heat of solidification is used to modify the specific heat of the solid phase so as to incorporate the effect of change of phase. It is assumed that, since the rate of change of phase is so slow and the solid phase is at a much lower tomperature than the liquid phase, most of the heat liberated by solidification goes to warm up the solid phase in the form of sensible heat. Thus, an effective heat capacity $c_{p S}^{*}$, based on a lumped averace temperature, $T_{a v}=\frac{\lambda}{k}\left(T_{f}+T(x, 0, t)\right)=\frac{?}{i}\left(T_{f}+f(t)\right)$, of the solid phase is defined to include tie phase-change enthalpy change: $\begin{gathered}\text { Enthalpy change } \\ \text { per cram }\end{gathered} \underset{\text { Datent heat }}{\text { Lram }}+\underset{\text { pensible heat gain }}{\text { praun }}$

Thus, $\quad c_{p S}^{*}\left(T_{f} \cdots I_{a v}\right)=H_{i}+c_{p S}\left(T_{f} \cdots I_{a v}\right)$
So, we obtain an oquation for the efective specific neat $c_{p S}^{*}$:

$$
\begin{equation*}
c_{p S}^{*}=c_{p S}+2 H_{f} /\left(T_{f}-f(t)\right) \tag{38}
\end{equation*}
$$

$c_{p S}^{*}$, instead of $c_{p s}$, is used in the calculations of the temperature profiles of the solid phase in Equation. (30) and Equation (33). No scparate interface equation is now needed.

Therefore, to summarize, when the temperature of a node in the liquid phase equals or drops below the solidification temperature, T_{f}, the node is henceforth treated as a node in the solid phase, and $c_{p s}^{*}$, instead of $c_{p s}$, is used to calculate solid-phase temperatures so long as solidification is in progress. Thus, Equation (28) to Equation (38) are sufficient to determine the temperature profile, the rate of solidification, and the streamlines in the test cell at any time t.

Stability Criteria for the Finite-Difference Approximations

(1) Conduction Model

The stability criteria for this model are

$$
\begin{equation*}
G_{1} \geq 0 ; G_{4} \geq 0 \tag{39}
\end{equation*}
$$

for both liquid and solid phases. Irom Equation (39), maximum
allowable Δt for givon $\angle x$ and Δy are evaluaited. Whichevor Δt from Equation (39) is smaller is the controlling. Δt for a stable solution. It is recomnended that.a smaller value of Δt than the maximun allovable Δt be used. The smaller the value of Δt, the smaller the error in the finite-difference approxination gets. For our system, G_{I} controls the allowable Δt.
(2) Conduction-Convection Model

> The stability criteria of Equation (39) also apply here. Other criteria are imposed on velocity, thus:

$$
\begin{equation*}
G_{3} \geq 0 ; G_{9} \geq 0 ; G_{10} \geq 0 ; \text { and } G_{11} \geq 0 \tag{40}
\end{equation*}
$$

These inequalities yield the following restrictions on u and v :

$$
\begin{equation*}
|u(j, j)| \leq 2 \lambda_{I} / \Delta x,|v(i, j)| \leq 2 \lambda_{I} / \Delta y \tag{41}
\end{equation*}
$$

Thus, for a given Δx or Δy, a meximum allowable absolute value of u or v may be determined. The resultant velocities evaluated for our test material are small, a fact that caused the difficulty in finding any stable finite-difference solutions for the full-blown coupled equations of energy and motion so long as the gravity term remained in the velocity equations.

The velocities obtained by alfferentiating Equation (28) with respect to x or y must satisfy Equation (41).

Vith the experinentally-observed temperature difference between the hot and the cold plates, we could not use the full marnitude of Equation (28) without violating Equations (4I). So, we restricted the maximum velocities that we used to be 95 percent of the maximum velocities permitted by Equations (41), and the constant B in Equation (28) was modified accordingly. If the maximum permitted velocities, in stead of some slight?y lower values were used, our solution would be in the critical region. where a small round-off error from the digital computer could-make the solution unstable and meaningless. Table 1 gives the time elements and velocities permitted by stability restrictions and the actual values used in our calculations.

Tabze 1: TITE IHCMESNS AHD VELOCITIES ALIOWABLE BY STA$\Delta \mathrm{x}=\Delta \mathrm{y} ; \quad \lambda_{\mathrm{L}}=9.306 \times 10^{-4} \mathrm{~cm}^{2} / \mathrm{sec}$
Space Element Time Element $\Delta x(\mathrm{~cm})$
$\begin{array}{lcrr}\Delta x(\mathrm{~cm}) & \Delta t(\mathrm{sec}) & (\mathrm{cm} / \mathrm{sec}) & (\mathrm{cm} / \mathrm{sec}) \\ 0.254 & 17.33 & 7.32 \times 10^{-3} & 2.75 \times 10^{-3} \\ 0.127 & 4.33 & 14.65 \times 10^{-3} & 5.49 \times 10^{-3} \\ 0.0635 & 1.08 & 29.31 \times 10^{-3} & 10.99 \times 10^{-3}\end{array}$
Actual values used:
$\Delta x=0.127 \mathrm{~cm} ; \Delta t=1.0 \mathrm{sec} ; u(\max)=13.92 \times 10^{-3} \mathrm{~cm} / \mathrm{sec} ;$
$\forall($ max $)=5.22 \times 10^{-3} \mathrm{~cm} / \mathrm{sec}$
$\nabla($ max $)=5: 92 \times 10^{-3} \mathrm{~cm} / \mathrm{sec}$

Error Anolysis of the Central Difference Method Used

(1) Conduction Model

The torms fomored in the finito-difference approximations are of the order of $(\Delta x)^{2} T_{x x} / 6,(\Delta y)_{T_{Y y}} / \epsilon$, and . ${ }^{3} \Delta t T_{t t}$. These torms are assumed to be small provided Δx, Δy and Δt are small. We ran our digital-computer programs for o squaro-grid system ($\Delta x=\Delta y$) for-different values of Δx and Δt. Me found that a solution at $\Delta x=0,12 r \mathrm{~cm}, \Delta t=$ 2.0 sec was not much different from a solution at $\Delta x=$ $0.0635 \mathrm{~cm}, \Delta t=1.0 \mathrm{sec}$ (see Table 2), but involved quite a large difference in computation time. Hence, we assumed that the solution had converged at $\Delta x=0.137 \mathrm{~cm}$ and $\Delta t=$ 2.0 sec , and therefore, used $\Delta t=1.0 \mathrm{sec}$ and $\Delta x=0.127 \mathrm{~cm}$ for computation.

	0_{K}^{*}	
Time	$\Delta x=0.127 \mathrm{~cm}$	$\Delta x=0.0635 \mathrm{~cm}$
$(1000 \mathrm{sec})$	$\Delta t=2.0 \mathrm{sec}$	$\Delta t=1.0 \mathrm{sec}$
0.36	299.636	299.638
1.44	293.139	293.150
2.16	291.272	291.277
2.52	290.622	290.660
2.83	290.185	290.205
3.60	289.472	289.500
3.96	238.766	289.260
4.68	287.557	287.614
5.04	286.361	286.161
5.76	285.226	285.202
6.48	234.161	284.112
7.20		
	\% Calculated temperature	

(2) Conduction-Convection Hodel

The errors inherent in the finitemafference approximations of the conduction model are also present in the combincd conduction-convection model. But the most important source of error is due to hidden numerical dispersion terms. These are terms that are introduced inadvertently into the orifinal temperature equations (Equation 5), when finite-difference approximations that ignore second-order derivatives are used. In the backward- and the forwarddifference approximations both the second-order space derivatives and the second-order time derivatives contribute to these dispersion error terms. In the central-difference method, only the second-order time derivative introduces the numerical dispersion error terms. This kind of error cannot bc avoided by using time-implicit finitedifference techniques. The numerical dispersion errors are revealed in the central-difference method as follows:-

If Equation (34i) is rewritten in terms of derivatives by using Equation (29) without ignoring the second-order time derivative; the resulting equation is:
$3 \Delta t T_{t t}+D T / D t=\lambda_{L}\left(T_{x x}+T_{y y}\right)$
By comparing Equation (42) and Equation (5), we find that an extra term $\because \Delta t T_{t t}$ has been introduced into the original Equation (5) by the finite-difference approximation that ignored second-order time derivative $T_{t t}$. By differentiat-
inf Equation-(5) with respect to t, ignoring third- and higher ordor derivatives, and introducins the result into Equation (42), we get, on further rearrangement:
$D T / D t=\left(\lambda_{I}-\frac{-3}{2} u^{2} \Delta t\right) T_{x x}+\left(\lambda_{I}-\frac{1}{2} v^{2} \Delta t\right) T_{y y}=u v \Delta t T_{x y}$
Thus, the finite-difference (central-difference) approximation has introduced the extra terms $-\frac{1}{2} u^{2} \Delta t T_{x x},-\frac{1}{2} v^{2} T_{x x} \Delta t$ and -urn $x y$. into the original Equation (5). These are the numerical-dispersion terms. The numerical.-dispersion coefricients $-\frac{3}{2} u^{2} \Delta t,-\frac{2}{2} v^{2} \Delta t$ and -uvat must be compared against λ_{L} to see how ruch error is introduced. They could introduce devastatincly significont errors. Errors due to dispersion terms do not arise in the conduction model but in models involving the boundary-layer equations of energy and motion. These errors can be reduced but not eliminated by including higher-order derivatives of time in the difference approximations or by recucing the marnitudes of the velocity components and./or time step. Table 3 gives the magnitude of the dispersion coefficients evaluated for our problem in which $\lambda_{L}=9.306 \times 10^{-4} \mathrm{~cm}^{2} / \mathrm{sec}, u_{\max }=13.92 \times 10^{-3} \mathrm{~cm} / \mathrm{sec}$, and $v_{\operatorname{tax}}=5.2 \times 10^{-3} \mathrm{~cm} / \mathrm{sec}$.

Note that, although it is desirable to decrease Δy and Δx and thereby increase maximun allowable velocities due to stability restrictions, the dispersion error terms

Table 3:

$$
\lambda_{I}=9.306 \times .10^{-4} \mathrm{~cm}^{2} / \mathrm{sec}
$$

$$
u=13.92 \mathrm{~cm} / \mathrm{sec} ; v=5.22 \mathrm{~cm} / \mathrm{sec} ; . x=y=0.127 \mathrm{~cm}
$$

Δt
(sec)
6.0
4.0
2.0
1.0
0.5
$3 u^{2} \Delta t$
$\left(\mathrm{~cm}^{2} / \mathrm{sec}\right)$
0.625λ
$0.416 \lambda_{\mathrm{L}}$
$0.208 \lambda \lambda_{\mathrm{L}}$
$0.104 \lambda \mathrm{~L}^{2}$
$0.052 \lambda_{\mathrm{L}}$

$\frac{v^{2} v^{2} \Delta t}{\left(\mathrm{~cm}^{2} / \mathrm{sec}\right)}$
$0.038 \lambda^{\prime}$
0.059 d
$0.029 \lambda^{\text {L }}$
0.015λ
$0.007 \lambda_{\text {I }}$

uv Δt
$\left(\mathrm{~cm}^{2} / \mathrm{sec}\right)$
$\pm 0.468 \lambda$
$\pm 0.312 \lambda$
$\pm 0.156 \lambda$
$\pm 0.073 \lambda$
$\pm 0.039 \lambda_{\mathrm{L}}$
increase with increasing velocity or decreasing Δx and Δy. We ren digital-computer programs for the conduction-convection model at different values of Δt for the same $\Delta x=\Delta V$ $=0.127 \mathrm{~cm}$ that was used for the conduction model. We found that the dispersion terms did not make any significant difference at $\Delta t=1.0 \mathrm{sec}$. At $\Delta t=6.0 \mathrm{sec}$, the numerical dispersion terms made a substantial difference in the accuracy of the theoretical results. The time required to complete a computer program to acquire the equivalent of two hours of experimental time was prohibitive for $\Delta t \leq 1.0$ sec. Perhaps, a faster computer would be very helpful. We conjecture that the numerical-dispersion coefficient -uvat counteracta sone of the efiects of the coefficients $-\frac{1}{3} u^{2} \Delta t$ and $-\frac{1}{2} v^{2} \Delta t$, so that, when the last twomentioned are of the order of 10 percent of λ_{L}, tre net error effects are much smaller than that.

It happenca also, that in our system, the maximum temperature sradients in the liquid phase occur along the y-coordinate direction; that is, in the direction such that $\left.\left|v T_{y}\right|\right\rangle\left|u T_{2}\right|$. Thus, v had a lot more influence on the magnitude of the temperature profiles than u did. But a slance at Takle 3 reveals that the error terms due to v alone in the dispersion terms are much smaller than those introduced by u. Thus, the numerical-dispersion terms did not have as much influence on the theoretical results as as they would if the maximun temperature gradients had been in a direction to cause $\left|u T_{x}\right| \gg\left|v T_{y}\right|$.

EYPGTHEN TOUTPIES AYD YROCEDUBE

Equipment

The principal elements of the equiprent were a test cell, a 24-channel multipoint temperature recorder, and a refrigerator. The auxiliary elements were copper-constantan thermocouples, a power-driven liquid pump, methanol, some pipes and tubings, and a test-cell stand that could be swivelled to various inclined positions from the horizontal plaine. The test material, n-hexadecane, was Iiquid at the ambient temperatures for the experinents.

Test Cell: The test coll (Fig. 1 and 5) had a constant cross-section of external dimensions 12.70 cm , and an overall height of 9.20 cm . It was composed of a copper cooling chamber soldered to one face of a 0.32 -cmmthick copper plate (henceforth referred to as the cold plate or the botton plate)vhich was in turn bolted and glued to one end of a plexiglas frame. The frame was glued and bolted to a 1.27-cm-thick plexiglas plate on the other end. Thus, the plexjeqlas frame, together with the plexiglas plate on one end and the copper plate on the other end formed a 10.16-cmmsquare, 3.81-cm-high cavity with 1.27-cm-thick walls for containing the test material, normal heradecane. The cooling chamber was constructed from $0.64-$ cr copper plates soldered together.
FIGTRE 5. THERHOCOUPLE LOCATIONS IN TEST CELL

The test coll carried twenty-four copper-constantan thermocouples located at certain measured locations. Table (4) details the thermocouple locations. The coordinates given in the table were located and fixed as shown in Figure (1) and Figure (5). The positions could be off by $\pm 0.16 \mathrm{~cm}$ because of the limitations in the measuring accuracy.

Table 4: THEPTOCCUPLE LOCATIOMS IN TEST CELL

$x=$ horizontal distance (parallel to the cold bottom plate), starting from left corner of test-cell cavity.
$y=$ vertical distance from cold bottom plate_
Each distance could be off by $\pm 0.16 \mathrm{~cm}$
No. = the number assigned to a thermocouple

No.	x (cm)	$\mathrm{y}(\mathrm{cm})$	No.	x (cm)	y (cm)	No.	x (cm)	y (cm)
1	2.54.	0.00	13	2.03	1.52	3	0.00	2.54
4	8.13	0.00	20	4.06	1.52	6	10.16	2.54
14	2.03	1.02	23	6.10	1.52	8	2.03	3.05
21	4.06	1.02	16	8.13	1.52	15	4.06	3.05
24	6.10	1.02	9	2.03	2.29	18	6.10	3.05
17	8.13	1.02	19	4.06	2.29	11	8.13	3.05
2	0.00	1.27	22	6.10	2.29	7	2.54	3.81
5	10.16	1.2 .7	12	8.13	2.29	10	7.62	3.81

Temperature Recorder: The recorder was a 24 -channel, multipoint recorder sold by ACCO Bristol ${ }^{(34)}$, model 66A24 PGC 570, that operated on 120 volts of 60 -cycle alternating current. It recorded temperatures in degrees Fahren-
heit in the rance $-100^{\circ} \mathrm{F}$ to $+200{ }^{\circ} \mathrm{F}\left(199.83^{\circ} \mathrm{K}-366.49{ }^{\circ} \mathrm{K}\right)$. It had a chart drive speed of 2.54 .cm per minute and print speed of 2 seconds per point. The chaint could be read with an accuracy of $\pm 0.27^{\circ} \mathrm{K}\left(0.5^{\circ} \mathrm{F}\right)$.

Pump: The pump used to circulate the coolant (nethanol) from the refrigerator to the test cell was a Chemical RubberCompany (35) "No-Seal" centrifugal pump, Model ABIPOO5N\#. It operated on 115-volts, 60-cycle alternating current only. It could attain 50 revolutions per second and pump from 441.6 cc per sec and at a head of 30.5 cm to 262.8 cc per second at a head of 274.3 cm under normal atmospheric conditions.

Refrigerator: The refrigerator for the coolant was a Bar Ray of Brooklyn, New York, Model 557 T refrigerator that operated on a 60 -cvcle, 115 -volt alternating current. It had a regulator that could be used to adjust the steady-state temperature to which the refrigerant was cooled.

A schematic diagram of the assembled equipment is shown in Figure (6). A two-way tap-control valve permitted the circulation of the coolant in an auxiliary circuit until temperature equilibration was achieved in the coolant.

Experimental Procedure

The test material, n-hexadecane, (1iquid at normal room temperature) was introduced into the test-cell cavity through a filler-port. An excess of the material was allowed to
FIGURE 6. BLOCK DIAGRAM OF ASSEHBLY OF HAIN EXPERIHENTAL EQUIPNENTT.

collect in an expmaion chamber comected to a reservoir ot' the westmaterial. In this-way, an pockets in the test cell were kept to a minimun as tho solidification progressed, by the introduction ot new test naterial to assume the vacated volume.

The telperature recorder was turned on at the same_time as the pump was turned on to circulate cold methanol to cool the bottom plate of the test cell. By use of the auxiliary circuit, a step change in the temperature of the test cell could be achieved. The experiments were pertomed with the cell inclined at the folloving angles from the horizontal plane: $0^{\circ}, 15^{\circ}, 30^{\circ}, 45^{\circ}$ and 60°. Stuaious attempt was mace to approximate the sams starting conditions for all runs-m the same cooling rate, the same low temperature for the coolant and the same amolent temperature. The ambient. temperature was-approximately controlled by setting the room thermostat at a constant level for about 24 hours before an experimental rum. Before each run the thermocouples were calibrated on the recorden by testing against room temperature as recorded by a nercury thermometer. When all 24 themocouples recorded the same temperature within $\pm 0.27{ }^{\circ} \mathrm{K}$, the experiment was begun. Room temperature was watched continually during the course of an experiment via a nercury thermometer. The temperature at the start of an experiment, as recorded by the 24 tnerinocouples, usually
did no: tate from that reconded by the mereury thermom meter by : ore than 1.1 OK . Flow of coolant was kept approximately constant from run to run by opening all the valves to their fullest extent. The punp had only one speed setting. The low temperature of the coolant was reculated by the "cut in" temperature of the refrigerator which was set constant at about $2^{\prime} 72^{\circ} \mathrm{K}$. Hethanol was used as the coolant because it stayed liquid at this low temperature whereas water became ice. With such a setting, the coolant could be brought to a low temperature of about $2700^{\circ} \mathrm{K}$.

The experiments were usuelly torminated after about 2 hours when more than half of the test material had solidified. The temperatures, read from the charts, were then plotted against time. The bottom-plate temperatures were fitted into a polynomial function of time, comprising a ramp decay followed by a constant temperature. For a given set. of starting conditions, the experiments were repeated to test for reproducibility.

The test material was practical n-hexadecane $\left(\mathrm{n}-\mathrm{C}_{10} \mathrm{H}_{34}\right)$ distributed by the Eastman Kodak Company ${ }^{(36)}$ for chemical. purposes. It had small impurities that influenced its solidirication temperature. The solidification range was given by the manufacturer as $291.00^{\circ} \mathrm{K}-289.2{ }^{\circ} \mathrm{K}$. However, we found that our sample froze at $290.60_{i i}\left(17.5{ }^{\circ} \mathrm{C}\right)$.

Test for the Remoducjonitity of Experinental Data

Two experinental runs under sinilar conditions of angle of inclination of test cell, cut-in tenperature of re rigerator, flok rate of coolant, chart speed and ambient temperatures as close as possible to each other were tested for the reproducibility of the data. Itwas estimated that experimental errors due to thermocouples, chart reading, and anbient temperature would cause as much as $\pm 0.830^{\circ} \mathrm{K}$ error in the experimental data. Thus, the-mean of the differences of the temperatures recorded by the same thermocouple in both experimental runs were estirated with a 99% Leved of confidence.

First of all the temperatures were plotted on the same temperature-versus-time graph. Then, 17 points were selected on the time axis and the temperatures of the two runs were read off. The difference of the temperatures was obtained for each of the seventeen points. Thus, a sample mean of the differences and a sample standard deviation were calculater. A confiaence interval was calculated at the 99% level of confidence. If the confidence interval fell within $\pm 0.830 \mathrm{~K}$, the data were accepted as reproducible. These calculations were performed for each of the 24 thermo-
couples for a civen patr of experimental runs under test. Fig. 7 gives sanple craphs for testing reproducibility of data for experimental Runs 9 and 10.

Let e_{i} be the difference between temperatures recorded by the same thermocouple between a pain of experimental runs under identical conditions at a point i in time and let \bar{e} be the mean of a sample of size n of such differences. Then the true mean n_{e} of the differences, at 99% levei of confidence, lies in the interval.

$$
\begin{equation*}
\overline{\mathrm{e}}-\mathrm{ts} / \sqrt{n}<m_{e}<\underline{e}+t s / \sqrt{n} \quad \text { inclusive } \tag{44}
\end{equation*}
$$

where s is the standard deviation of the sample of size n, and t is calculated rrom the student t-distribution at the upper 0.5% tail.

$$
\text { For our system, } t_{0.005,17}=2.921 \text {, and } n=17 \text {, }
$$

$$
\begin{equation*}
s=\frac{n \sum_{i=1}^{n} c_{i}^{2}-\left(\sum_{i=1}^{n} e_{i}\right)^{2}}{n(n-1)} . \tag{45}
\end{equation*}
$$

Thus, the confidence interval is

$$
\begin{equation*}
\overline{\mathrm{e}}-2.921 \mathrm{~s} / \sqrt{17}<\mathrm{m}_{\mathrm{e}}<\overline{\mathrm{e}}+2.921 \mathrm{~s} / \sqrt{17} . \tag{46}
\end{equation*}
$$

This interval must lie within the limits of experimental exror before a pair of runs may be accepted as being reproducible. The test for reproductbility of data was performed

for all. 8 pairs of runs and for each thermocouple. Table 5
shows a sample test result for experimental Runs 9 and 10.

Table 5: ZEPRODUCIBILITY TEST BETEFN RIN 9 AND RIN 10
The decision "accept" means that results are reproducible. The confidence interval must lie within ± 0.83 o for the results to be accepted as reproducible. Level of confidence $=99 \%$.

Thermocouple Number	e O_{K}	s OK	Confidence $_{O_{K}}$ Interval	Decision
1	0.033	0.092	-0.033, 0.098	accept
2	0.065	0.251	-0.112, 0.243	accept
3	0.273	0.278	$0.081,0.474$	accept
4	0.033	0.092	-0.033, 0.098	accept
5	0.040	0.407	$-0.247,0.328$	accept
6	0.251	0.334	$0.014,0.488$	accept
$?$	0.069	0.209	-0.079, 0.217	accept
8	0.053	0.458	-0.271, 0.377	accept
9	0.125	0.131	$0.033,0.217$	accept
10	0.152	0.316	-0.072, 0.376	accept
11	0.180	0.239	$0.001,0.349$	accept
12	0.243	0.250	$0.066,0.420$	accept
13	0.1 .76	0.154	$0.067,0.285$	accept
14	0.229	0.202	$0.086,0.372$	accept.
15	0.114	0.167	-0.004, -0.232	accept
16	0.051	0.117	-0.032, 0.1 .34	accept
$\pm ?$	0.090	0.343	-0.153, 0.333	accept
18	0.233	0.244	$0.065,0.411$	accept.
19	0.066	0.288	-0.139, 0.270	accept
20	0.040	0.173	-0.083, 0.163	accept
21	0.033	0.280	$0.032,0.231$	accept
22	0.131	0.210	-0.018, 0.279	accept
23	0.049	0.293	$0.158,0.256$	accept
24	0.107	0.185	$0.024,0.238$	accept

Table 6 lists all 16 experimental runs in pairs according to reproducible pairs.

TQblo \because EPRRTHEYAL RUYS IISTED IN ERPRODUCIBLE PAIRS

pinst values of temperature correspond to experimental runc sho:m first in the first column.

Runs	α°	T_{a},	${ }^{\circ} \mathrm{K}$	Cold plate steady temperatures. ${ }^{\circ} \mathrm{K}$
1; 2	0°	300.7;	300.7	270.4; 27u. 4
3; 4	0°	300.1 ;	300.4	269.8; 269.8
5; 6	15°	298.7;	298.7	270.4; 270.4
7; 8	600	298.7;	298.7	270.4; 270.4
9; 10	300	301.2;	301.5	269.8; 269.8
11; 12	45°	300.1;	300.1	269.8; 269.8
13; 14	45°	301.5;	301.5	$269.8 ; 269.8$
15; 16	60°	301.5;	301.5	270.4; 270.4

Presentation of Experimentel and Theoretical Data

The experimental data for all the 16 exporimental runs are presented in Appendix A. Figures (8) to (18) show comparisons of experimental and theoretical data. The experimental runs were performed under conditions listed in-Table 6. Figures (8) and (9) were obtained for experimental runs with the cell sitting on a horizontal plane. Remarkably good agreement was obtained_between the experi.mental data and theoretical conduction data, thus indicating that when the cell was sitting on a horizontal plane, heat transfer was by conduction with negligible convection. Obviously, a convection model could not predict the results of Figures (8) and (9). The data have been presented according to distance y from the cooled bottom plate. The data from the experimental runs at anfle 00 (horizontal) indicated that temperatures were functions of time and distance,
y, from the cooled plate, wt not of horizontal distance x, as'would be expected from a conduction model with our given boundary conditions.

Figures (10) to (18) present results obtained with the test cell inclined at different angles from the horizontal, starting with a 15° angle. A study of the experimental points on these graphs reveals the presence and importance of convective heat transfer. Now, the temperature profiles become functions of horizontal distance x. Here, again, as in Fiefures (8) and (9), the temperature graphs have been arranged according to vertical distance y from the cold plate. Ata given vertical distance y, the maximum and minimum temperatures along a horizontal direction, x, have been plotted on the same graph. Other thermocouples with in-between temper. atures have been plotted singly. Thus, the separation of temperatures caused by convection along a horizontal direction was revealed in each case.

The general effect of convective heat transfer would appear to be increased heat-transfer rate, resulting in lower temperatures throughout the cell and faster freezing rate than would be obtained with conduction heat transfer only. Also, convection chanced the shape of the interface from being flat to a curved shape (Fig. 13). Hore fireezing occurred near the pirot $x=0$ of angle of inclination than near $x=W$.

The effect of increasing angle was to increase the
cooling-down of that part of the cell to the right of the plane $x=W / 2$. The greater the angle of inclination, the more the cell is cooled down below pure conduction temperature profile. It would seem that after certain temperature gradients were achieved, the cooling rate was greatly reduced. The magnitude of maximum devict,ion of temperature along a horizontal direction at a given height, y, from the _ cold plate was observed experimentally to depend more-on the temperature difference between initial temperature T_{a} and solidification temperature, T_{f}. Rough estimates of this difference were found to be approximately $\frac{1}{2}\left(T_{a}-T_{f}\right)$ irrespective of the angle of inclination, However, the rate of attainment of such maximum differences differed with angles and could not be estimated.

Figures (10) to (18) show trends in temperature profiles as solidification with convection progressed. The theoretical curves could not be brought to match closer With the experimental curves, because stability limitations from the finite difference approximations of the temperature equations would not allow us to use the maximum possible velocities from the velocity profiles.

If velocities could be increased without violating the stability criteria of the finite difference solutions, then it is felt that it would be possible to reach the proper maximum velocity wher. the theoretical and experimentai curves

Would be "ay close to each other. At such a time one could calculate comirically the maximun velocities for the system as functions of ancle x. With the true maximum velocities known, one could then find the proper value of (T - \vec{T}) involved in the gravity approximations in the velocity profiles.

Rough estimates of fractions of maximum velocities that we actually used were obtained as follows. At the start of convection, a critical Rayleigh number was assumed based on values available in the literature. From the critical Rayleich number, ΔT_{0} at the start of convection was computed and used in Equation (28) to caiculate the maximum velocity component $u_{\operatorname{mex}}\left(u_{\max }>v_{\max }\right)$. Then, ratios of the actual $u_{\text {mas }}$ used and this computed u^{*} max were obtained for different angles. The ratios were then the fractions of initial maximum velocity (or in other words, gravity levels) that we could attain at the very start of convection. Equation (47) gives the relationship for the velocity ratios or. cravity level $Q:$

$$
Q=0.95\left(2 \lambda_{I} / \Delta x\right) / E_{c r}=45.6 h_{c} / R_{a_{C r}}{ }^{j} \sin \alpha-\quad-(47)
$$

where $R_{a c r}=$ critical Rayleigh number

$$
=-\beta \operatorname{ch}_{0}^{3} \Delta T_{O_{o r}} /\left(\lambda_{L} v \delta_{L}\right)
$$

and $h_{0}=$ height of Iiquid in test cell at the start of convection.

A half of the height of the liquid phase at the start of convection was used because the temperature gredient was still confined to $y<h / 2$. The factor 0.95 appeared in Equation (47) because we used 95\% of the maximum velocity allowed by stability requirements of the finite difference solution.

Table 7 shows gravity levels (fractions of maximum velocity obtained) against magnitudes of angle of inclination α. It shows that, as the angle of inclination increased, our stability- allowable maximu: velocity became a smaller fraction of the maximum velo.iity predicted by Equation (28) at the start of convection. As solidification progressed, the velocity in the system couid approach the actual maximum velocity that we usei and could also become smaller then that. It must be emphasized that the gravity levels in Table $?$ correspond to the start of convection only.

Table 7: GRAVITY LEVELS AT START OF CONVECTION, (Q)

$$
\begin{gathered}
\Delta x=0.127 \mathrm{~cm} . \quad \mathrm{R}_{\mathrm{a}_{\mathrm{cr}}}=3.500 \\
u_{\max } \text { actually used }=1.9 \lambda_{\mathrm{L}} / \Delta \times=13.92 \times 10^{-3} \mathrm{~cm} / \mathrm{sec}- \\
\lambda_{L}=9.306 \times 10^{-4} \mathrm{~cm}^{2} / \mathrm{sec} \\
\frac{\alpha^{0}}{15^{\circ}} \\
30^{\circ} \\
45^{\circ}
\end{gathered}
$$

ifgune 8. Exprathemtal hid mheoretical, data for hun 2 : $\alpha=0^{\circ} ; ?_{a}=300.660 \mathrm{~K}$

FRGURE θ (conta) RUN 2: $\alpha=0^{\circ} ; T_{a}=300.660 \mathrm{~K}$

ITROR 8 (contol) RUN $2: \Omega=0^{\circ} ; \mathrm{T}_{\mathrm{a}}=300.66{ }^{\circ} \mathrm{K}$

 $a=0^{\circ} ; r_{a}=300.110^{0} \mathrm{~K}$

PIGUR: 9 (conta) 2 2i: $3: 1: 00$; $T_{a}=300.110^{\circ}$

FIGURE 10. FXPERIMETTAL AID THEORETGCAL DATA FOR RUN 6:

PIGURE 10 (conta) . RUN $6: \alpha=15^{\circ} ; T_{a}=298.72{ }^{\circ} \mathrm{K}$

FIGURE 10 (conta). RUN: $6: a=25^{\circ} ; \mathrm{T}_{\mathrm{a}}=298.720^{\circ} \mathrm{K}$

FIGURE 11. IIIITIAI STREARILINES IN TEST CELL (THEORETICAL).

FIGURE 13. InTERFACE SHAPE AT $t=7200 \operatorname{SEC}$ (Theoretical)

figum 14. Experthemal ard meorentcal data for rus 7 : $\alpha=60^{\circ} ; T_{a}=293.72{ }^{\circ} \mathrm{K}$

FIGTRE 14 (cointa) , DIII 7: $a=60^{\circ} ; \mathrm{T}_{\mathrm{a}}=208.72^{\circ} \mathrm{K}$

TIGURE 15 (conta). RUN 9: $a=30^{\circ} ; \mathrm{Ta}_{\mathrm{a}}=301.22^{\circ} \mathrm{K}$

FIGURE 16. EXPERIG:TAL ASD THEORETICAL DATA FOR RUN 11:

FIGURE 16 (conta). FIJ: 11: $r=45^{\circ} ; \mathrm{M}_{2}=300.11 \mathrm{o}_{\mathrm{K}}$

FIGURL 17. EXPERIMENTAL ARD THEORMTICAL DATA FOR RUN 14: $\alpha=45^{\circ} ; T_{a}=301.490 \mathrm{~K}$

FIGURE 17 (conta). RUIl 14: $\alpha=45^{\circ} ; T_{a}=301.49{ }^{\circ} \mathrm{K}$

RTGURE 17 (contd). RUN 14: $\alpha=45^{\circ}$; $T_{a}=301.49{ }^{\circ} \mathrm{K}$

FIGURE 18. EXPERTIEXRAL AND THEORETICAL DATA FOR RUN 15:

FIGURE 18 (contd). RUN 15: $a=60^{\circ} ; T_{a}=301.49{ }^{\circ} \mathrm{K}$

COICLUSIOMS MND RECOMEUDATIONS

The following conclusions were dravm from this study:

1. Wher the test cell was sitting on the horizontal plane with angle $a=-0^{\circ}$, the heat transfer mode was by conduction, not convection.
2. Good agreement was obtained between the pureconduction model and the experimental runs made at $\alpha=0^{\circ}$.
3. Whon conduction was the heat tromsfer mode, the shape of the solidification interface was planar, not curved. For all horizontal x - positions the solid-phase height was the same.
4. The temperature during conduction solidification was strongly a function of time and distance y from the cooled bottom plate. It had no strong dependence on the horizontal x-direction when the containing side walls acted as insulators. It was found that one-dimensjonal transient conduction model in the y-direction predicted the phase change as well as did transient two-dimensional model that included the x-direction. This finding supports the findings in a previous transient one-dimensional conduction phase change study made by these investigators (Reference 13).
5. In solidification by conduction, in which the side walls approximate insulators, the extra minor accuracy obtained by using a transient two-dimensional model was not

Worth the large difforential in cost in computer time from a one-dimensional transient solution. A uni-dimensional trensient solution would do as well and still save computer time.
6. The phase-chance process was the controlling process. Thether the heat transfer mode was by conduction or convection, the actual values of phase-change enthalpy change, soiidification temperature, density, specific heat and thermal conductivity at the interface seemed to control the accuracy of prediction of experimental data by theoretical models. Nore accurate values must be found for these properties at the interface where some of them experience discontinuities and sudden jumps. In the theoretical calculations, the interface was found to act as a pseudo-insulator between the two phases present.
7. With the container of the test material inclined at an angle, we found that convective effects became impor$\tan t$.
8. Convection increased the heat transfer rate and caused a faster overall cooling of the test cell and its contents. Two indications of the macnitude of convective effects in the cell were how much below the conduction temperature the cell had been cooled at any given time, and the shape of the solidification interface. :Ifth convection present, and cooling occurring from below, the interface
became shaped slightly like an elongated S-curve with the up branch near the vertical wall passing through the origin of the ancile of pivot, the flat (or inflexion) part near the half-way mark between the two side walls. The shortest height of solid occurred near the far side wall.
9. We could not get a complete solution of the full velocity equation by finite difference methods because of stability restrictions imposed by the solution procedure. Approxinate velocity profiles were substituted into the temperature equation. The profiles involved a single circulation flow symetric in the vertical y-direction but off-centered in the horizontal x-direction.
10. Convection caused the temperature profile to depend strongly on both horizontal and vertical directions (unlike conduction) even when the side walls were insulated. The maximum deviation in temperature between two points in the same horizontal plane at a given vertical distance from the cold plate seemed to depend more strongiy on the temperature difference between the ambient and the freezing interface than on the angle of inclination. The angle of inclination, however, had significant effect on the overall heat transfer process.
11. Solid-solid phase transition may take place during solidification and the physical properties of the system should be nodified to account for this.
12. The thooretical calculations used in this study to investigate natural cowection are first approximations and clearly delineate the trend and significance of convection. With the availability of a much faster computer with a much larger memory bank than the computer available to usi one may finally use small enough time steps and space increments that would yield velocities higher or equal to those predicted analytically and still stay in the stable regime of finite difference solutions. In such a case, one_could estimate more accurately the shape and magnitude of the velocities and come up with better gravity level approximations in the vilocity equations.
13. Many theoretical methods used in the literature could not stand up to the test in predicting actual experimental data. These theoretisal solutionswere obtained under certain conditions and with physical properties that could not be duplicated casily in the laboiatory.
14. Perhaps, a better approach to phase-change thermal control would be to use polymers that undergo solidsolid transition with high enthalpy change. Thus, tive phase. change material could stay solid or amorphous within the range of its temperature of operation. Thus, better packaging would result. Materials that melt or solidify are more difficult to package in the liquid phase and more difficult to predict as to performance because of convective and other
effects.
15. Another approach to the thermal control problem with materials that go from liquids to solids and vice versa would be to come up with empirical effective thermal properties that incorporate convective and conduction heat trensfer with phase change. For instance, such a procedure could take into consideration entrapped air pockets and voids in the solid phase, and heat transfer coefficients due to convection in the liquid phase.

We conclude that, with cooling occurring from below, gravity-induced convection is important in the solidification of n-hexadecane when the cooling is not oriented perpendicular to the direction of gravity. Heat transfer rate-is, in general, increased.

HOMEMCLATURE

Text	Computer	
B	A1	Constant (Eq.24c) - $\mathrm{cm} / \mathrm{sec}$
c		Constant (Eq.15) - $\sec -{ }^{\circ} \mathrm{K} / \mathrm{cm}$
${ }^{\text {c }}$ p	CPL, CPP, CPS	Specific heat - cal/ (gm- $\left.{ }^{\circ} \mathrm{K}\right)$
$c_{\text {cs }}^{*}$	CP.	Effective specific hest of solid. phase (Eq.38) - cal/(gm- ${ }^{\circ} \mathrm{K}$)
a, $\bar{\alpha}$	ROL, ROP; ROS	Density $\quad-\mathrm{mm} / \mathrm{cm}^{3}$
g_{i}	D(I)	Coefficients in polynomial-fit, $f(t)=D_{1}+D_{2} t+D_{3} t^{2}+\ldots+D_{i} t^{i-1}$ of cold plate temperature - $\circ_{\mathrm{K} /\left(\mathrm{sec}^{i-1}\right)}$
e_{i}		Difference in temperatures recorded by the same thermocouple at the same time in a pair of experimental runs made under identical conditions - ${ }^{\circ} \mathrm{K}$
$\overline{\mathbf{e}}$		Sample mean of e_{i} in a sample of size $n-{ }^{\circ} K$
$f(t)$	$T(1,1)$	Temperature of cold plate - o_{K}
g		Acceleration due to normal gravity $\mathrm{cm} / \mathrm{sec}^{2}$
$G_{1}-G_{11}$	1 GI-GII	Coefficients defired in Eq. 30 and Eq. 31
h	AHO, AHI	Height of the liquid phase of the test material (y direction) - cm
n_{p}	AHP	Thickness of walls of test cell - cm
H_{P}	HF	Latent heat of solidification - cal/gm

Text	Combuter	
k	AK, PK, SK	$\begin{aligned} \text { Thermal conductivity }- & \text { watt } /\left(\mathrm{cm}^{\circ}{ }^{\circ} \mathrm{K}\right) \\ & \mathrm{cal} /\left(\mathrm{cm}-\mathrm{sec}-{ }^{\mathrm{O}_{\mathrm{K}}}\right) \end{aligned}$
	K	Degree of polynomial fit $f(t)$ of coldplate temperature
m_{e}		True mean of $e_{i}-o_{K}$
M	M	Number of finite-difference. space nodes in the coordinate x direction
N	N	Number of finite-difference space nodes in the coordinate y direction
NS(i)	NS (I)	Number of finite-difference space nodes in the solid phase in the y direction
p, P		Pressure
q		Characteristic number (Eq.14) - cm^{-2}
Q		Fraction of normal gravity (Eq.47)
$\mathrm{R}_{\text {a }}$		Rayleigh number (Eq.47)
s		Sample standard deviation of e_{i} in sample of sizen (Eq.45) - ${ }^{\circ} \mathrm{K}$
t	TIME, TSE	Time - sec
Δt	DELT	Finite-difference time increment - sec
T	T, TO	Temperature - o_{K}
T_{a}	TA	Ambient (room and initial) temperature. $-o_{K}$
T_{f}	$T \mathrm{~F}$	Equilibrium solidification temperature of test material - ${ }^{O_{K}}$
u	UX	Coordinate-x component of velocity cm/sec
∇	VY	Coordinate-y component of velocity cm/sec

Sext	Computer	
W	AL	Width of cell cavity (x direction cm
X	XA, XP	Abscissae in a Cartesian coordinate system - cm
Δx	DELX	Finite-difference space increment in the coordinate-x direction \qquad cm
$X(x)$		Function defined by Eq. 18 to Eq. 22 $\mathrm{cm} / \mathrm{sec}$
y	Y	Ordinate in a Cartesian coordinate system - cm
Δy	DELY	Finite-difference space increment in the coordinate-y direction - cm
α		Angle of inclination of the test cell measured anticlockwise from the horizontal plane - degrees
β		Coefficient. in equation of state for $\text { density: } \alpha_{L}=\alpha_{L O}+\beta T-g m /\left(\mathrm{cm}^{3}-O_{K}\right)$
γ	BB	Constant (Eq.23) $=\mathrm{cm}^{-1}$
λ	ALA, ASA	Thermal diffusivity - $\mathrm{cm}^{2} / \mathrm{sec}$
v		Kinematic viscosity $-\mathrm{cm}^{2} / \mathrm{sec}$
ω		Vorticity (Eq.10) - sec ${ }^{-1}$
φ	PHI	Stream function (Eq.9) - $\mathrm{cm}^{2} / \mathrm{sec}$
π	PI	Constant - 3.14159266

Subscripts Subindices

I \quadIdentifyins number for finite-diff- erence node in the x direction	
j	$J \quad$Identifying number for finite- \quaddifference node in the y direction

Subscripts

IITRRATURE CITED

1. Carslaw, H.- S., and Jaeger, J. C., Conduction of Heat in Solids: Oxford Univ. Press, 2 na ed., pp. 282-296
2.-Stefan, J., "Uber die Theorie der Eisbildung insbesondere uber die Eisbildung in Polarmere, "Annalen der Physik und Cherie, v. 42 , p. 269 (1891).
2. Danckwerts, P. V.; "Unsteady-state Diffusion or Heat Conduction with Hoving Eoundary, " Irans. Faraday Soc., $\nabla .46$, p. 701 (1950).—.
3. Booth, F.; "A Note on the Theory of Surface Diffusion Reactions" "Trans. Faraday Soc. (Iondon), v. 44, p. 796 (1948).
4. Kreith, $F_{.}$, and Romie, $F_{\text {. }} E_{0}$, "A. Study of the Thermal Diffusion Equation with Boundary Conaitions Corresponding to Solidification or lielting of laterials Initially at the Fusion Temperature, " Proc. Phys. Soc., v. 68, p. 277 (1955)
5. Chao, C. C., and Weiner, J. H., "Heat Conduction in Semi-Infinite Solid in Contact with Inearly Increasing hass of Fluid," Quarterly of Applied Math, v. 14, p. 214 (1956).
6. Chambers, L. G., "A Variational Principle for the Conduction of Heat, " Querterly Jour. of Mech. and Applied Math, v. 9, p. $234(1956)$.
7. Biot, M. A., and Daughaday, H., "Variational Analysis of Ablation," Jour. Acrospace Sciences, ∇. 29, p. 227 (1962).
8. Goodman, T. R., "The Heat-Balance Integral and Its Application to Problems Involvinc a Chance of Phase" Trans. A. S. I. E. , V. 80, p. 335 (1958).
9. Poots, G., "An Approximate Treatment of Heat Conductior Problem Involvinc a Two-Dinensional Solidification Front," Int. Jour. Heat ena Lass Transfer, v. 5, p. 339 (1962).
10. Dusinberre, G.. H., "Numerical liethods for Transient Heat Flow, "Trons. A. S. Li. E., v. 67, p. 703 (1245).
11. Fujado, P. R., Leltine of Finite Paraffin Slab, Thesis No. T-1215, Colorado School of Nines, Golden, colorado (1908).
12. UKanwa, A. O., Stermole, F. J., and Golden, J. O., "Fhase Change Solidification Dymamics," Jour. of Spacecraft and Rockets, v. 8, no. 2, pp. $\frac{193-196 \text {, }}{\text { (feb. }} 1971$. (Feb., 1971).
13. Miller, K. I., "Transient One-Dimensional Heat-Conduc. tion Analysis for Heterogeneous Structures Including an Ablating Surface," A. S. I. E. Paper Ho. 59-HT-22 (1959).
14. Ehrlich, I. N., "A Numerical liethod of Solving a Heat Flow Froblem with Foving Boundary, "Jour. Assoc. Computine Hechinery, v. 5, no. 2, pp. 161-176 (1958).
15. Shlosinger, A. P., and Eentilla, E. W., Thermal control Contract Uusible laterials, Interim heport iNSL65-16, Contract iis -11163 , iorthrop Corporation, Hawthorne,
California (1965).
16. Bentilla, E. W., Sterrett, K. F., and Sarre, I. E., Thermal Control by Use of Fusible liaterials, Final Keport liSís5-16-1, Contract iNSS-11163, Northrop Corporation, Hawthorne, Calirornia (1966).
17. Bannister, T. C., and Bentilla, E. W., "Study on Thermal Control by Use of Fusible Materials," Inst. Environmentai Sci., Ann. Tech. Htr. Proc. pp. $593-607$ (1966).
18. Grodzha; P. G., and Fan, C., Thermal Control by Freezing and ileltinc, Interim Report ESEC-1123-1, LiSC/HRECA 791342, Contract HASU-21123, Lockh ied Hissiles and Space Co.. (1968).
19. Chambro, P. In, "On the Dynamics of Phase Growth," $\frac{\text { Quarteriy joun. of hech. and Applied Math, }}{\mathrm{p} .224}(1956)$. 9 ,
20. Huehlbauer, J. C., and Sunderland, J. E., "Heat Conduction with Freezing and Velting, " Applied Nechanics Review, v. 18, no. 12, pp. 951-959 (1965).
21. Rohcenow, and Choi, Hoat, Hass, and honentum Transfer: Erentice-Hall, Inc., Englowood Clisfe, iv. J. (1961).
22. Schlichting, H., Boundary Layor Theory: MacGraw-Hill Book Co., Ii. Y... I. I. (1966).
23. Longrell, P. A., Lechanics of Fluid Plow, MacGraw-Hill Book Co., N. Y., N. Y. (1960).
24. Bird, R. B., Stewart, H. E., and Lightfoot. E. N., Transport Yhenonena: John Wiley \& Sons, Inc.,
25. Vilkes, J. O., and Churchill, S. W., "The FiniteDifference Computation of Natural Convection in a Rectangular Enclosure," A. I. Ch. E. Jour.: V. 12, no. 1, pp. 161-166 (1966).
26. Peaceman, D. W., and Rachford, H. H., "The Numerical Solution of Parabolic and Elliptic Differential Equations," Jour. Soc. Indust. ADDl. Hath., v. 3, no. 1, pp. $2 \mathbf{y - 4 1}$ (iarch 1955).
27. Chandraselchar, S., Hydrodynamic and Hydromaenetic Stability: Clarenaon Fress, Oxiord, England (1961).
28. Pellew, A., and Southwell, Re V., "On Maintained Convective Motion in a Fluid Heated from Below," proceedinss of goy. Soc. (London), wer. A, v. 176, pp. 312-343 (July 1940).
29. Leontev, A. I., Kirdyashkin, A. G., "The Theory of the Convective Heat mansfer for the Vertical Flow of Fluid, "Int. Heat Transfer Conference, V. 1, pp.
30. Bain, R. I. , The Effect of Gravity-Induced Free Convectan woin the hiel tins jhenoncine of a Finite Parafrim Sisi for Thomin Control, Thesis No. T(1970).
31. Perry, J. H., Chilton, C. H., and Kirkpatrick, S. D., Chomical Encineer's Handbool: HeGraw-Hill Book CO., 4 th Edition, Ch. 23, D. 54 (1963).
32. Naxwell, J. B., A Handbool; of HVdrocarbons: Van Nostrand, Co., Inc., p. 161 (1950).

33. Chemical Rubber Company, CRC Lab Apnaratus, The Chemical Rubber Co., Clevelaná, Chio, p. 20 (1969).
34. Eastman Organic Chemicals, A Division of Eastman Kodak Company, Rochester, 3, New York.

APPENDIX A

The experimental data for the report is given in the following reference: Ukanwa, A. O., "Thermal Hodeling of Phase Change Solidification in Thermal Control Devices Including Natural Convection Effects," Thesis No. T1422, Colorado School of Mines, Golden, Colorado, 1971

APPENDIX B

FORTRAN IV Computer-Program "COMDET. F4" for solving either the conduction mcdel or the combined conductionconvection model of solidification heat transfer.

This program was actually run on a P.D.P-10 digital computer via a time-sharing teletype. Instructions For The Use of "CONDET. F4"
A. For progrom execution:

6=INPUT DEEICE $7=O U T P U T$ DEVICE
B. Input device (or input file)

The cold-plate (bottom=plate) temperature is assumed to be a pulynomial in time (t) for $0 \leq t \leq T B$, and constant thereafter at a temperature TC. Follow the following steps (in order) in reading in the input data:

1. Consult the section on nomenclature in this text for terms used in the computer program. Then read in:
2. Line 1 (or card 1): Ambient temperature (or initial uniform temperature; TA); equilibrium temperature of solidification (TF); final constant cold-plate temperature (TC); finite-difference time increment (DELT); space increment in the x-direction (DELX); space increment in the y-direction (DELY); all in that onder. Use free-floating point format of FORHAT 2.
3. Line 2 (or card 2): Time at which cold-plate temp-
erature becones constiant (TB); time at which program execution should be terminated (TAU). Use free-floating point format (FORMAT 2) ${ }^{\circ}$
4. Line 3 (or card 3): Degree of polynomial fit of cold-plate temperature (K); number of finite-difference nodes, in the x direction (II), in the y direction (N) ; an integer (INT) that is negative or zero for conduction-model solution but positive non-zero for the combined conductionconvection model solution. Use free-integer format (FORMAT 3)_
5. Line 4 (or card 4): Coefficients (D(I)) of polynomial fit to cold-plate temperauure. (See the section on nomenclature for the definition of $D(I)$ or $\left.D_{i}\right)$. Use freefloating point format (FOBMAT 2).
6. Line 5 (or card 5): Liquid-phase thermal conductivity (AK); solid-phase thermal conductivity (SK); liquid. phase density (ROL); solid-phase density (ROS); liquid-phase specific heat (CPL); solid-phase specific heat (CPS); latent heat of solidification (HF). Use free-floating point format (FORMAT 2).
7. Iine 6 (or card 6): Properties of material of the wall of the test cell: thermal conductivity (PK); density (ROF); specific heat (CPP). Use free-floating point format (FORMAT 2).
8. Ine 7 (or card 7): Initial height of test-cell
cavity (AFO); width of test-cell cavity (AL); thiclmess of test-cell walls (AHP). Use frec-floeting point format (FORmAT 2).

A sample input file looks like this:
$301.49,290.6,269.83,1.0,0.254 ; 0.127$
362,0,7200.0
1,81,31.3
$301.49,-4.0874$
$0.02036 ; 0.00037,0.755 ; 0.833,0.506,0.505,56.67$
$0.000496,1.155,0.35$
3.81,10.16.1.27

Note that the listed input file is for the combined con-duction-convection model, since $N T=3$ is positive and non-zero. Also, according to this file, the cold-plate temperature is linear with time ($K=1$) witil $t=T B=362.0$ when it stays constant at $T C=269.83$.
C. OUMPUT FILE

This program will print out

1. The time at which a node in the y-direction solidifies, the node itself and its horizontal location.
2. The temperature profile and the stream function profile of the entire test cell every 60 time steps. It starts with the cold plate ($J=1$); prints out all horizontal (I) values and then goes to $J=2$, and so on.
3. Adequate headincs are printed to identify what is being printed out.

The print-out may be modified from the general format given in this program to any desirable fornat by changing lines 64 to 78 of COIDET. 44 as needed.


```
                                    &1:!0.1% `氵̈!
                                    .1.1,
    :=`,
    \because: (!,.,
        !\because, %
```



```
        \therefore= ,
```



```
        :7,:>
```



```
        7: 1:
```



```
        ****!
```



```
        J=:
```



```
        &% %(:O)=?:
        \}
```



```
        !位 l= <. l
        !'= (1)
```



```
        1.+!!)
        1:s c
            1:!! 0:O:"_mer!
            i=:
```


APPEDTX C: OTYER TUEOPEICAI COTSIDEATIONS

If one attempts to solve the vorticity equation (Eq.11) or the velocity equations (Eq.8) by central-difference methods, one finds.that the following stability requirements must be satisfied:

$$
\begin{align*}
& 1-2 v \Delta t\left(1 /(\Delta x)^{2}+1 /(\Delta y)^{2}\right) \geq 0 \tag{C-1}\\
& |u(i ; j)| \leq 2 \nu / \Delta x \tag{C-2}\\
& |v(i, j)| \leq 2 v / \Delta y \tag{c-3}
\end{align*}
$$

When the vorticity or the velocity equations are solved conjointly with the temperature equation (Eq.5), the conditions of Equation (C-I) to Equation (C-3) must be satisfied conjointly with the conditions of Equation (39) and Equations (4I). The most restrictive conditions are used to evaluate maximum time increment (Δt) and velocities allowable by stability requirements.

For our test material, $v>\lambda_{L}$; hence, Equation ($C-1$) rather than Equation (39) would determine $\Delta t_{\text {max? }}$ but the allowable maximun velocities would be determined by Equation (41) rather than by Equation (C-2) or Equation (C-3).

At the first time step, every term except the gravity term in Equation (11) or Equations (8 ; would be zero. Thus, from Equations (8), the velocities obtained at the Pirst time step would be:

$$
\begin{equation*}
u^{\prime}(i, j)=-\frac{\beta G \Delta t}{\bar{d}_{L}}(T(i, j)-\bar{T}) \sin \alpha \tag{C-4}
\end{equation*}
$$

$$
\begin{equation*}
v^{\prime}(i, j)=-\frac{\beta_{G} \Delta t}{\bar{\alpha}_{L}}(T(i, j)-\bar{T}) \cos \alpha \tag{C-5}
\end{equation*}
$$

The values given by Equations (C-42 and ($\mathrm{C}-5$) must satisfy the conditions for stability given by Equations (4I), (C-2), and (C-3). But, with experimentally-observed values, the temperature difference, $T(i, j)-\bar{T}$, is such that the stability requirements of Equations (4I), (C-2), and (C-3) are violated even for $\Delta t=0.05 \mathrm{sec}$ and $\Delta x=0.0635 \mathrm{~cm}$. It is very hard to complete stable computer solutions for values smaller than these. Yet, in order to get stable solutions of the velocity and the temperature equations at the very first time step, one needs a time-step size much smaller than 0.05 sec . Even with such small time steps, it would get more difficult to satisfy the stability requirements as the velocities would increase with subsrquent time steps. This was the problem that forced us to use approximate velocity profiles for our study in stead of solving the complete velocity equations by finite-difference methods.

